

Analysis Tools

tools.iedb.org

Presented by: Alessandro Sette, IEDB Principal Investigator

Analysis tools with broad applications

http://tools.iedb.org/main/analysis-tools/

Population Coverage

http://tools.iedb.org/population/

- Calculates the fraction of individuals projected to bind and/or respond to a given set of epitopes with defined reactivity
- Based on
 - Epitope known HLA binding/restrictions
 - HLA genotypic frequencies
- HLA genotypic frequencies vary in different ethnicities
 - http://allelefrequencies.net

Population Coverage – example

http://tools.iedb.org/population/

For a set of 11 MHC class II restricted epitopes with promiscuous HLA binding, what is the population coverage in different North African populations?

Population Coverage – example

http://tools.iedb.org/population/

Results:

- Summarized in table format
- Plotted per population

Home	Help	Example	Reference	Download	Contact	
------	------	---------	-----------	----------	---------	--

Please Note: The denotorio frequency is currently not working as exceeded and the IEDB team is looking into this. Population Coverage Calculation Result

	Class II				
population/area	coverage ^a	average_hit ^b	pc90°		
Algeria	77.15%	7.28	0.88		
<u>Ethiopia</u>	83.0%	8.71	1.18		
Morocco	83.44%	8.16	1.21		
Sudan	60.56%	4.52	0.51		
Tunisia	74.26%	6.86	0.78		
Average	75.68	7.11	0.91		
Standard deviation	8.33	1.45	0.26		

projected population coverage

^b average number of epitope hits / HLA combinations recognized by the population ^c minimum number of epitope hits / HLA combinations recognized by 90% of the population

Population: Algeria

Epitope Conservancy Analysis

- Calculates the degrees of conservancy of one or more epitopes, within a given set of protein sequences
- Adjustable sequence identity threshold
- "Degree of conservation" = the fraction of protein sequences containing the epitope at a given identity level

Epitope Conservancy – example

http://tools.iedb.org/conservancy/

Home Help Example Reference Downloa	ad Contact	
Epitope Conservancy Analy	sis	
Step 1. Epitope Sequence(s)		
Enter epitope sequence(s) in PLAIN or FASTA format: (?)	>NP 1 MSASKEVKSFLWIQS >NP 21 SGYCSNIKLQVVKDA >NP 41 GLDFSEVSNVQRLMR >NP 61 DGDLKRLRDLNQAVN >NP 81 KSTQQKSVLRVGTLS >NP 101	Known epitopes
Or upload epitope sequence(s) from a file:	Browse No file selected.	
Step 2. Protein Sequence(s)		
Enter protein sequence(s) in PLAIN or FASTA format: 🕐	>58643 Lassa NP MSASKEVRSFLWTQSLRRELSGYCSNIKLQVVKDAQALLHGLDFSEVSNVQRLMRKQKRDDGDLKRLRDL NQAVNNLVELKSTQQKSVLRVGTLSSDDLLILAADLEKLKSKVTRTERPLSSGVYMGNLSSQQLDQRAAL LNMIGMTGVSGGGKGASDGIVRVMDVKINAELLNNQFGTMPSLILACLIKQGQVDLNDAVQALTDLGLIYT AKYPNSSDLDRLSQSHPILNMIDTKKSSLNISGJVNFSLGAAVKAGACMLDGGNMLETIKVSPQTMDGILK SILKVKKSLGMFVSDTPGERNPYENILYKICLSGDGWPYIASRTSIVGRAWENTVVDLEQDNKPQKIGNG GSNKSLQSAGFAAGLTYSQLMILKDFKCFNLIPNAKTMMDIEGRPEDPVEIALYQPSSGCYVHFFREPTD LKQFKQDAKYSHGIDVTDLFAAQPGLTSAVIEALPRNMVITCQGSEDIRKLLESQGRRDIKLIDITLSKA DSRKFENAVWDQFKDLCHMHTGVVVEKKKRGGKEEITPHCALMDCIMFDAAVSGGLDAKVLRVVLPRDMV FRISTPKVVL >9294837 Lassa NP	Protein sequences
Or upload protein sequence(s) from a file:	Browse No file selected.	
Step 3. Calculation option(s)		
Analysis type: 🕐	Epitope linear sequence conservancy Epitope discontinuous sequence conservancy	
Sequence identity threshold: ?	>= v 100% v	
Remove duplicated protein sequences? ③		
	Submit Reset	

Epitope Conservancy – example

http://tools.iedb.org/conservancy/

Home	Help Examp	le Reference Do	ownload Con	tact			
Epito Download	pe Cons result 🗷	servancy A	nalysis	Result	1		
Epitope \$	Epitope name	Epitope sequence 🖕	Epitope length 🔶	Percent of protein sequence matches at identity <= 100%	Minimum identity 🔶	Maximum identity 🔶	View details 🗘
22	NP 421	LKQFKQDAKYSHGID	15	98.44% (63/64)	93.33%	100.00%	Go
20	NP 381	LDPNAKTWMDIEGRP	15	68.75% (44/64)	80.00%	100.00%	Go
17	NP 321	ASRTSITGRAWENTV	15	67.19% (43/64)	86.67%	100.00%	Go
21	NP 401	IALYQPSSGCYIHFF	15	65.62% (42/64)	86.67%	100.00%	Go
25	NP 481	KLIDIALSKTDSRKY	15	54.69% (35/64)	66.67%	100.00%	Go
26	NP 501	DQYKDLCHMHTGVVV	15	54.69% (35/64)	86.67%	100.00%	Go
19	NP 361	FTAGLTYSQLMTLKD	15	50.00% (32/64)	80.00%	100.00%	Go
24	NP 461	TCQGSDDIRKLLESQ	15	50.00% (32/64)	80.00%	100.00%	Go
23	NP 441	AAQPGLTSAVIEALP	15	34.38% (22/64)	86.67%	100.00%	Go
18	NP 341	DGKPQKAGSNNSNKS	15	28.12% (18/64)	60.00%	100.00%	Go
2	NP 21	SGYCSNIKLQVVKDA	15	17.19% (11/64)	26.67%	100.00%	Go
10	NP 181	SLTLACLTKQGQVDL	15	17.19% (11/64)	26.67%	100.00%	Go
11	NP 201	ALTDLGLIYTAKYPN	15	17.19% (11/64)	26.67%	100.00%	Go
3	NP 41	GLDFSEVSNVQRLMR	15	15.62% (10/64)	26.67%	100.00%	Go
13	NP 241	ISGYNFSLGAAVKAG	15	15.62% (10/64)	26.67%	100.00%	Go
16	NP 301	NFYENILYKICLSGD	15	14.06% (9/64)	20.00%	100.00%	Ga

Epitope Conservancy – example

http://tools.iedb.org/conservancy/

Show rec	ords with identity >= •	70% •	Show records	
Protein #	Protein name	Positions	Protein sub-sequence(s)	Identity
1	58643 Lassa NP	401-415	IALYQPSSGCYVHFF	93.33%
2	9294837 Lassa NP	400-414	IALFQPSSGCYIHFF	93.33%
3	9294840 Lassa NP	400-414	IALYQPMSGCYIHFF	93.33%
4	9294844 Lassa NP	82-96	IALYQPMSGCYIHFF	93.33%
5	9294846 Lassa NP	82-96	IALYQPMSGCYIHFF	93.33%
6	9294848 Lassa NP	82-96	IALYQPMSGCYIHFF	93.33%
7	9294850 Lassa NP	82-96	IALYQPISGCYIHFF	93.33%
8	9294852 Lassa NP	82-96	IALYQPISGCYIHFF	93.33%
9	9294854 Lassa NP	82-96	IAIYQPMSGCYIHFF	86.67%
10	9294856 Lassa NP	82-96	IALYQPMSGCYIHFF	93.33%
11	9294858 Lassa NP	82-96	IALYQPNSGCYIHFF	93.33%
12	9294860 Lassa NP	82-96	IALYQPSSGCYIHFF	100.00%
13	9294862 Lassa NP	82-96	IALYQPSSGCYIHFF	100.00%

Epitope Cluster Analysis Tool

- Analyzes how many epitopes in a set have significant sequence homology
- Groups epitopes into clusters based on having sequence identity greater than a specified threshold
- Three different clustering approaches are implemented
- Enables diverse applications such as generating epitope pools, and understanding cross-reactivity

Clustering approaches

1. All connected peptides in a cluster

- All peptides homologous to specified threshold are clustered together (for example, 70%)
- Drawback: members of the cluster might be related by levels of homology lower than threshold (for example, 70%)

2. Fully interconnected clusters (cliques)

- All peptides in a cluster share homology higher than the given threshold
- Drawback: One peptide can be a part of multiple cliques

3. Cluster-break method (recommended method)

- An extension of first approach
- A cluster is broken down into subclusters based on consensus sequence computations

Here is a set of sequences...as an example

TRAPPER	
CLAPPER	
SNAPPER	
RAPPERTIME	
DAYTIME	
ANYTIME	
PERTIME	
TIMELESS	
TIMER	
TWICE	
NICEDAY	
ICE	
CEDAR	
HAPPYDAYS	
НІРРҮ	
PAYDAY	
CALAMARI	
АМА	
ISQAVHAAHAEINEAGR	

http://tools.iedb.org/cluster/

Chain 1:	step 1/3 Specify input peptides		Sanaife Sanua	(-)
Step 1: Enter epitope sequences	Enter epitope sequence(s) in PLAIN o	r FASTA format	TRAPPER CLAPPER SNAPPER RAPPERTIME DAYTIME PERTIME TIMELESS TIMER TWICE	▲ ▲ ▲
	Or upload epitope sequence(s) from a	file	Choose File No file ch	hosen
				Go to Step 2 Reset
Step 2: Specify parameters		Ste Sele	p 3: ect algorith	m
Select Sequence Identity Three	shold	step 3/	3 Specify clustering a	Igorithm
Select minimum sequence identity threshold: 800 Select canonical peptides	% ▼	Choos Go b	e clustering method: ack to Step 2	All the connected peptides in a cluster Cluster-break for clear representative sequence
Select minimum Peptide length: No	minimum length 🔻			Fully intereconnected clusters (cliques)
Select maximum Peptide length: No Start Over	Maximum Length Go to Step 3			Τ

Graphical Visualization Show Table Peptide Number Cluster Number Alignment Position Description Peptide 1 Consensus TRAPPERTIMEXESS 1 1 TRAPPER-----1 seq1 TRAPPER 2 1 -RAPPERTIME----2 seq4 RAPPERTIME З 1 ----DAYTIME----5 seq5 DAYTIME 1 4 ----ANYTIME----5 seq6 ANYTIME 5 ----PERTIME----PERTIME 1 5 seq7 6 TIMELESS 1 ----TIMELESS 8 seq8 7 ----TIMER---TIMER 1 8 seq9 2 Consensus TXICEDAX 2 1 TWICE---1 seq10 TWICE 2 2 -NICEDAY 2 seq11 NICEDAY 2 З --ICE----З seq12 ICE 2 4 ---CEDAR 4 seq13 CEDAR 3 Consensus HXPPYDAYS 3 1 HAPPYDAYS 1 seq14 HAPPYDAYS З 2 HIPPY----1 seq15 HIPPY З З - - PAYDAY -3 seq16 PAYDAY 4 CALAMARI Consensus CALAMARI 4 1 CALAMARI 1 seq17 4 2 ---AMA---4 AMA seq18 5 Singleton CLAPPER seq2 CLAPPER 6 Singleton SNAPPER seq3 SNAPPER _ 7 Singleton ISOAVHAAHAEINEAGR seq19 ISOAVHAAHAEINEAGR

http://tools.iedb.org/cluster/

TRAPPER and TIMELESS do not have 80% homology but are in the same cluster because each have 80% homology to other members of the cluster

http://tools.iedb.org/cluster/

Step 1: Enter epitope sequences

Enter epitope sequence(s) in PLAIN or FASTA format TRAPPER SNAPPER RAPPERTIME DAYTIME ANYTIME PERTIME TIMELESS TIMER TWICE Or upload epitope sequence(s) from a file Choose File No file chosen		Specify Sequence(s)
Or upload epitope sequence(s) from a file Choose File No file chosen	Enter epitope sequence(s) in PLAIN or FASTA format	TRAPPER CLAPPER SNAPPER RAPPERTIME DAYTIME PERTIME TIMELESS TIMER TWICE
	Or upload epitope sequence(s) from a file	Choose File No file chosen

Step 2: Specify parameters

Select Sequence Identity Threshold								
Select minimum sequence identity threshold:	80% •							
Select canonical pep	tides							
Select minimum Peptide length:	No minimum length 🔻							
Select maximum Peptide length:	No Maximum Length T							
Start Over	Go to Step 3							

Step 3: Select algorithm

Select Clustering approach						
Choose clustering metho	od:	▼				
		All the connected peptides in a cluster				
Go back to Step 2		Cluster-break for clear representative sequence				
		Fully intereconnected clusters (cliques)				

Show Table	Graphical V	Visualization			
Clique Number	Pentide Number	Alignment	Position	Description	Pentide
1	Consensus	PERTIMERAPPERTIME	-	-	-
1	1	PERTIME	1	seq7	PERTIME
1	2	TIMER	4	seq9	TIMER
1	3	RAPPERTIME	8	seq4	RAPPERTIME
2	Consensus	TWICE	-	-	-
2	1	TWICE	1	seq10	TWICE
2	2	ICE	3	seq12	ICE
3	Consensus	NICEDAY	-	-	-
3	1	NICEDAY	1	seq11	NICEDAY
3	2	-ICE	2	seq12	ICE
4	Consensus	NICEDAX	-	-	-
4	1	NICEDAY	1	seq11	NICEDAY
4	2	CEDAR	3	seq13	CEDAR
5	Consensus	CALAMARI	-	-	-
5	1	CALAMARI	1	seq17	CALAMARI
5	2	AMA	4	seq18	АМА
6	Consensus	ANYTIMER	-	-	-
6	1	ANYTIME-	1	seq6	ANYTIME
6	2	TIMER	4	seq9	TIMER
7	Consensus	TIMEXESS	-	-	-
7	1	TIMELESS	1	seq8	TIMELESS
7	2	TIMER	1	seq9	TIMER
8	Consensus	DAYTIMER	-	-	-
8	1	DAYTIME-	1	seq5	DAYTIME
8	2	TIMER	4	seq9	TIMER
9	Consensus	HXPPYDAYS	-	-	-
9	1	HAPPYDAYS	1	seq14	HAPPYDAYS

http://tools.iedb.org/cluster/

TIMER (and several others) appear in multiple clusters because they have the specified level of homology to the other members of the clique

Cluster-break method is the recommended method

http://tools.iedb.org/cluster/

Chan 1.	step 1/3 Specify input peptides				
Step 1:		Specify Sequence(s)			
Enter epitope sequences	Enter epitope sequence(s) in PLAIN or FASTA format	TWICE NICEDAY ICE CEDAR HAPPYDAYS HIPPY PAYDAY CALAMARI AMA ISQAVHAAHAEINEAGR	•		
	Or upload epitope sequence(s) from a file	Choose File No file chosen			
			Go to Step 2 Reset		

Step 2: Specify parameters

Select Sequence Identity	Threshold
Select minimum sequence identity threshold:	80% •
Select canonical pep	tides
Select minimum Peptide length:	No minimum length 🔻
Select maximum Peptide length:	No Maximum Length T
Start Over	Go to Step 3

Step 3: Select algorithm

	Select Clustering approach
Choose clustering method:	▼
	All the connected peptides in a cluster
Go back to Step 2	Cluster-break for clear representative sequence
	Fully intereconnected clusters (cliques)

Show Table Gr	aphica	al Visualization				
Cluster.Sub-Cluster	Number	Peptide Number	Alignment	Position	Description	Peptide
1.1		Consensus	RAPXXXTIMEXESS	-	-	-
1.1		1	RAPPERTIME	1	seq4	RAPPERTIME
1.1		2	ANYTIME	4	seq6	ANYTIME
1.1		3	DAYTIME	4	seq5	DAYTIME
1.1		4	PERTIME	4	seq7	PERTIME
1.1		5	TIMELESS	7	seq8	TIMELESS
1.1		6	TIMER	7	seq9	TIMER
1.2		Singleton	TRAPPER	-	seq1	TRAPPER
2.1		Consensus	NICEDAX	-	-	-
2.1		1	NICEDAY	1	seq11	NICEDAY
2.1		2	-ICE	2	seq12	ICE
2.1		3	CEDAR	3	seq13	CEDAR
2.2		Singleton	TWICE	-	seq10	TWICE
3.1		Consensus	HXPPYDAYS	-	-	-
3.1		1	HAPPYDAYS	1	seq14	HAPPYDAYS
3.1		2	HIPPY	1	seq15	HIPPY
3.1		3	PAYDAY-	3	seq16	PAYDAY
4.1		Consensus	CALAMARI	-	-	-
4.1		1	CALAMARI	1	seq17	CALAMARI
4.1		2	AMA	4	seq18	AMA
5.1		Singleton	CLAPPER	-	seq2	CLAPPER
6.1		Singleton	SNAPPER	-	seq3	SNAPPER
7.1		Singleton	ISQAVHAAHAEINEAGR	-	seq19	ISQAVHAAHAEINEAGR

http://tools.iedb.org/cluster/

<u>Restrictor Analysis Tool for Epitopes (RATE)</u>

- Automated method to infer HLA restriction of a given epitope set, from immune response data of HLA typed subjects
- The method is based on computing the frequency of all alleles expressed in the population studied in donors who had an immune response to each given epitope
- Compare those frequencies in donors that did not have a response to the same epitope

http://tools.iedb.org/rate/

IEDB Analysis Resource	- Labs		Labs designation
Home Help Example Reference Download Con RATE (Restrictor Analysis Tool	for Epitopes)		
Enter data Allele data Response data Cutoff for response to be considered positive	Choose File No file chosen Choose File No file chosen	}	Two data input files need to be provided
Email id (optional) Job name (optional)	Submit	Reset	

RATE – Input: Allele data

- Data format = tab separated in plain text file
- Sample data shown here 12 class II alleles of 6 loci for each donor are listed in separate columns

	iedb-ra	te_sample	_input_	allele_data - Notep	oad										
File	Edit	Format	View	Help											
Don	or-1	Donor-2	2 Done	or-3 Donor-4	Donor-5 Donor-6	Donor-7 Donor-8	Donor-9	Donor-10)	Donor-11	L	Donor-1	2	Donor-13	3
DRB	1*03:	01	DRB1	L*11:01	DRB1*01:01	DRB1*07:01	DRB1*12:	01	DRB1*11	:02	DRB1*08	:04	DRB1*11	:01	DRB1*
DRB	1*07:	01	DRB1	L*15:03	DRB1*07:01	DRB1*15:03	DRB1*15:	03	DRB1*13	:02	DRB1*15	:02	DRB1*13	:02	DRB1*
DRB	3*02:	02	DRB3	3*02:02	DRB3*02:02	DRB4*01:03	DRB3*01:	01	DRB3*02	:02	DRB5*01	:02	DRB3*02	:02	DRB3*
DRB	4*01:	03	DRB	5*01:01	DRB4*01:03	DRB5*01:01	DRB5*01:	01	DRB3*03	:01	n/a	DRB3*03	:01	DRB3*02:	:02
DQA	1*02:	01	DQA1	L*01:02	DQA1*02:01	DQA1*01:02	DQA1*01:	01	DQA1*01	:02	DQA1*01	:03	DQA1*01	:02	DQA1*
DQA	1*05:	01	DQA1	L*05:05	DQA1*05:01	DQA1*02:01	DQA1*01:	02	DQA1*05	:05	DQA1*04	:01	DQA1*05	:05	DQA1*
DQB	1*02:	01	DQB1	L*06:02	DQB1*03:02	DQB1*02:02	DQB1*05:	01	DQB1*03	:19	DQB1*03	:19	DQB1*06	:09	DQB1*
DQB	1*05:	03	DQB1	L*06:02	DQB1*03:02	DQB1*06:02	DQB1*06:	02	DQB1*06	:09	DQB1*06	:01	DQB1*06	:09	DQB1*
DPA	1*01:	03	DPA1	L*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:	03	DPA1*01	:03	DPA1*02	:01	DPA1*01	:03	DPA1*
DPA	1*02:	01	DPA1	L*03:01	DPA1*02:01	DPA1*02:01	DPA1*03:	01	DPA1*01	:03	DPA1*02	:02	DPA1*01	:03	DPA1*
DPB	1*13:	01	DPB1	L*03:01	DPB1*17:01	DPB1*01:01	DPB1*18:	01	DPB1*34	:01	DPB1*01	:01	DPB1*02	:01	DPB1*
DPB	1*17:	01	DPB1	L*105:01	DPB1*01:01	DPB1*02:01	DPB1*105	:01	DPB1*02	:01	DPB1*13	:01	DPB1*10	5:01	DPB1*

RATE – Input: Response data

- Data format = tab separated in plain text file
- The response data (here SFC values) for each epitope in each of the donors are provided

🥘 iedb-ra	ate_sample_input_respor	nse_data - No	tepad									
File Edit	Format View Help											
Peptide	# Peptide	ID	Peptide_	Seq	Donor-1	Donor-2	Donor-3	Donor-4	Donor-5	Donor-6	Donor-7	Done
1	3531.0365	GINTIPIA	INEAEYV	98	0	0	0	0	0	0	40	0
2	3531.0367	AAFQAAHA	rfvaaaa	68	0	50	0	0	0	0	0	0
3	3531.0514	AAVVRFQE	AANKQKQ	0	55	0	0	0	0	0	0	0
4	3531.0494	ELFVAAYV	PYVAWLV	0	0	0	0	n/a	n/a	0	0	0
5	3531.037	AAGTYVAA	DAAAAST	0	0	83	0	0	0	0	0	0

RATE – how it works

- Restrictions are determined based on
 - "Odds Ratio" and significance estimated using Fisher's exact test.

$$OR = \frac{(A^{+}R^{+}) \times (A^{-}R^{-})}{(A^{-}R^{+}) \times (A^{+}R^{-})}$$

• "Relative Frequency", a parameter estimated by the tool based on the frequency of alleles and donors responded

$$RF = \frac{A^{+}R^{+} / (A^{+}R^{+} + A^{+}R^{-})}{(A^{+}R^{+} + A^{-}R^{+}) / \text{Total donors}}$$

RATE – example

Enter data	
Allele data	Choose File iedb-rate_saele_data.txt
Response data	Choose File iedb-rate_sanse_data.tx
Cutoff for response to be considered positive	20.0
Email id (optional)	
Job name (optional)	

RATE – example

Input data summary		
Allele file	iedb-rate_sample_input_allele_data.txt	
Response file	iedb-rate_sample_input_response_data.txt	
No. of peptides	5	
No. of subjects	50	
Cutoff for response to be considered positive	20.0	downl
No. of alleles expressed by subjects	90	.csv
Total peptide-allele restriction examinations done	5 x 90 = 450	
Re-formatted allele data	Allele data	
Re-formatted response data	Response data	
HLA restriction results		
No. of unique peptides for which restriction is defined (in selected HLA restrictions)	4	
Total no. of peptide-allele restrictions (in selected HLA restrictions)	5	
RATE results (selected HLA restrictions)	RATE results	
Complete report (analysis results for all peptide-allele combinations)	Complete report	
Job id	1570383651	

RATE – results (complete report)

• All epitopes

	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν
1	Peptide#	Peptide_id	peptide_seq	Allele#	Allele	A+R+	A-R+	A+R-	A-R-	No_of_Donors	Response_n/a	Relative_freq	Odds_ratio	P-value
2	1	3531.037	GINTIPIAINEAEYV	1	DPA1*01:03	5	1	34	10	50	0	1.06838	1.47059	1
3	2	3531.037	AAFQAAHARFVAAAA	1	DPA1*01:03	10	2	29	9	50	0	1.06838	1.55172	1
4	3	3531.051	AAVVRFQEAANKQKQ	1	DPA1*01:03	8	1	28	10	47	3	1.16049	2.85714	0.6631
5	4	3531.049	ELFVAAYVPYVAWLV	1	DPA1*01:03	1	0	36	11	48	2	1.2973	inf	1
6	5	3531.037	AAGTYVAADAAAAST	1	DPA1*01:03	5	1	34	10	50	0	1.06838	1.47059	1
7	1	3531.037	GINTIPIAINEAEYV	2	DPA1*01:04	0	6	1	43	50	0	0	0	1
8	2	3531.037	AAFQAAHARFVAAAA	2	DPA1*01:04	0	12	1	37	50	0	0	0	1
9	3	3531.051	AAVVRFQEAANKQKQ	2	DPA1*01:04	0	9	1	37	47	3	0	0	1
10	4	3531.049	ELFVAAYVPYVAWLV	2	DPA1*01:04	0	1	1	46	48	2	0	0	1
11	5	3531.037	AAGTYVAADAAAAST	2	DPA1*01:04	0	6	1	43	50	0	0	0	1
12	1	3531.037	GINTIPIAINEAEYV	3	DPA1*02:01	3	3	20	24	50	0	1.08696	1.2	1
13	2	3531.037	AAFQAAHARFVAAAA	3	DPA1*02:01	5	7	18	20	50	0	0.9058	0.79365	1
14	3	3531.051	AAVVRFQEAANKQKQ	3	DPA1*02:01	3	6	18	20	47	3	0.74603	0.55556	0.7111
15	4	3531.049	ELFVAAYVPYVAWLV	3	DPA1*02:01	0	1	23	24	48	2	0	0	1
16	5	3531.037	AAGTYVAADAAAAST	3	DPA1*02:01	2	4	21	23	50	0	0.72464	0.54762	0.674
17	1	3531.037	GINTIPIAINEAEYV	4	DPA1*02:02	1	5	10	34	50	0	0.75758	0.68	1
18	2	3531.037	AAFQAAHARFVAAAA	4	DPA1*02:02	2	10	9	29	50	0	0.75758	0.64444	1
19	3	3531.051	AAVVRFQEAANKQKQ	4	DPA1*02:02	1	8	10	28	47	3	0.47475	0.35	0.6631
20	4	3531.049	ELFVAAYVPYVAWLV	4	DPA1*02:02	0	1	11	36	48	2	0	0	1
21	5	3531.037	AAGTYVAADAAAAST	4	DPA1*02:02	1	5	10	34	50	0	0.75758	0.68	1
22	1	3531.037	GINTIPIAINEAEYV	5	DPA1*03:01	0	6	9	35	50	0	0	0	0.5756
23	2	3531.037	AAFQAAHARFVAAAA	5	DPA1*03:01	2	10	7	31	50	0	0.92593	0.88571	1
24	3	3531.051	AAVVRFQEAANKQKQ	5	DPA1*03:01	2	7	6	32	47	3	1.30556	1.52381	0.6388
25	4	3531.049	ELFVAAYVPYVAWLV	5	DPA1*03:01	0	1	8	39	48	2	0	0	1
26	5	3531.037	AAGTYVAADAAAAST	5	DPA1*03:01	1	5	8	36	50	0	0.92593	0.9	1
27	1	3531.037	GINTIPIAINEAEYV	6	DPA1*04:01	1	5	0	44	50	0	8.33333	inf	0.12
28	2	3531.037	AAFQAAHARFVAAAA	6	DPA1*04:01	0	12	1	37	50	0	0	0	1
29	3	3531.051	AAVVRFQEAANKQKQ	6	DPA1*04:01	0	9	1	37	47	3	0	0	1
30	4	3531.049	ELFVAAYVPYVAWLV	6	DPA1*04:01	0	1	1	46	48	2	0	0	1

RATE – results (selected HLA restrictions)

• Epitope-allele combinations with RF ≥ 1.3 and p-value < 0.01 are reported (not Bonferroni corrected)

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	Ν
1	Peptide#	Peptide_id	peptide_seq	Allele#	Allele	A+R+	A-R+	A+R-	A-R-	No_of_Donors	Response_n/a	Relative_freq	Odds_ratio	P-value
2	1	3531.0365	GINTIPIAINEAEYV	84	DRB3*02:02	6	0	18	26	50	0	2.08333	inf	0.00847
3	2	3531.0367	AAFQAAHARFVAAAA	54	DRB1*01:01	4	8	0	38	50	0	4.16667	inf	0.00215
4	2	3531.0367	AAFQAAHARFVAAAA	65	DRB1*07:01	5	7	2	36	50	0	2.97619	12.85714	0.00593
5	3	3531.0514	AAVVRFQEAANKQKQ	89	DRB5*01:01	7	2	8	30	47	3	2.43704	13.125	0.0025
6	5	3531.037	AAGTYVAADAAAAST	54	DRB1*01:01	4	2	0	44	50	0	8.33333	inf	7.00E-05

Deimmunization

Overview	T Cell Tools	B Cell Tools	Analysis Tools	Tools-API	Usage	Download	Datasets	Contribute Tools	References	
Overview T Cell E This tool T cell cla This MHC Deim The amir first will I more The shou subs CD4 The	T Cell Tools	B Cell Tools Immunogen elative ability munogenicit nino acid pro- nplex. tion tool is a titutions that immunizatio d from the pro- shold is 8.5 (indow, the t e new immuni he neighbori aogenicity pre- colorad to pro- related to	Analysis Tools micity Predic of a peptide/Mi y predictor perties as well ttempt to ident create non-im n tool will list a otein with 15m sults and final which is differed bols will also ta hogenic site in ng peptides. diction:	Tools-API ction HC complex as their po tify immuno enter window result wind ence in the ake care of the neighbo	Usage to elicit osition w odomina versior unogenic size an dow will median the fact oring pe	Download an immune within the provide the provided the pr	Datasets response. eptide to p in a given oteins. So r peptides (erlap. 2) J non-imm ile rank fro mmunogen erefore, the	Contribute Tools oredict the immu therapeutically we have opted based on select In the second st unogenic substit om 26 reference nic substitution i e result window	References mogenicity of important pr a two steps p ed threshold ep, the user ution of each alleles set fo n the immur will also disp	f a class I peptide rotein, and suggest process; 1) In the . These peptides can select one or h selected peptides. or MHC class II). In nogenic peptides, olay the effect of
imm The	combined m	ethod predic	e method (<u>Pau</u> ts the final sco	l et. al. 201 re that con	nt CD4 <u>L5</u>), imm nbines t	nunogenicit he predictio	by method ons from 7	and combined n -allele method a	nethod (IEDE	B recommended). Jenicity method.

Deimmunization – background

- Wild type and engineered proteins are widely used as drugs
- Immunogenicity of protein drugs is associated with serious potency and safety issues
- A potential approach to reducing immunogenicity is based on removal of T cell epitopes (de-immunization)

Deimmunization – approach

- Generate overlapping peptides from protein sequence
- Predict HLA class II binding regions

126-150	6.08	
16-30	21.76	
11-25	23.46	
6-20	60.39	
1-15	38.89	
	1-15 6-20 11-25 16-30	1-15 38.89 6-20 60.39 11-25 23.46 16-30 21.76

- Suggest amino acid substitutions that are predicted to decrease binding
 - Also consider the effect of substitutions on neighboring peptides

Deimmunization – example

http://tools.iedb.org/deimmunization/

IEDB Analysis Resou		
Home Help Example Reference Contact Deimmunization tool		
Step 1/2 (Predicting Immunogenic regions in the given p		
Enter epitope sequence(s) in FASTA format	>sp P01588 EPO_HUMAN Erythropoietin OS=Homo sapiens GN=EPO PE=1 SV=1 APPRLICDSRVLERYLLEAKEAENITTGCAEHC SLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQP WEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVY SNFLRGKL KLYTGEACRTGDR	Epitope sequence
	FASTA format detected.	
Or upload epitope sequence(s) from a file		
S		
Select maximum median percentile rank threshold: (?)	20 •	Threshold
	Go to Next step Reset	

Deimmunization – example

http://tools.iedb.org/deimmunization/

Home Help Example Reference Contact								
Deimmunization tool (Peptide mutant prediction) The prediction may take about more than 10 minutes per peptide selected. Email address is required to ensure you receive the result.								
Step 2/2 (Predicting non-immunogenic variants of selected immunogenic peptides)								
Choose Immunogenic peptides for deimmunization								
Protein Number	Start Position	End Position	Median Percentile Rank	Peptide	Select Peptide/s			
1	136	150	10.255	DTFRKLFRVYSNFLR				
1	96	110	13.505	DKAVSGLRSLTTLLR				
1	101	115	14.25	GLRSLTTLLRALGAQ				
1	141	155	14.5	LFRVYSNFLRGKLKL				
Choose threshold for deimmunization								
Select the cutoff v	alue for the differ	>8.5 🔻						
Enter Job Details								
Enter the Job Nan	ne (Optional)	Job name (option)						
Enter your Email A	Address (Require	asette@lji.org						
					Submit Reset			

Deimmunization Score

Immunogenicity for Neighboring peptide (1)	Immunogenicity for Neighboring peptide (2)	Score
Absent	Absent	1
Reduced	Absent	2
Reduced	Reduced	3
Neutral	Absent	4
Reduced	Neutral	5
Neutral	Neutral	6
Increased	Absent	7
Reduced	Increased	8
Increased	Neutral	9
Increased	Increased	10

Deimmunization – example

	А	В	С	D	E	F	G	Н	1	J	K	L
								C terminal	C terminal	N terminal	N terminal	
	Protein		Peptide	Start	End	Median	Median	Neighbor 1	Neighbor 2	Neighbor 1	Neighbor 2	Deimmunization
1	Number	Peptide	ID	Position	Position	Percentile Rank	Difference	(Median)	(Median)	(Median)	(Median)	Score
2	1	DTFRKLFRVYSNFLR	wild	136	150	10.255	0	14.5	49.75	47	44.25	NA
3	1	DTFRKLFRVYSNFDR	L149D	136	150	32	21.745	41	68.5	NA	NA	3
4	1	DTFRKLFRVYSNFGR	L149G	136	150	27.5	17.245	31.5	68.75	NA	NA	3
5	1	DTFRKEFRVYSNFLR	L141E	136	150	26.5	16.245	26.5	NA	60.75	NA	3
6	1	DTFRKPFRVYSNFLR	L141P	136	150	26.35	16.095	26.5	NA	52.5	NA	3
7	1	DTFRKQFRVYSNFLR	L141Q	136	150	26	15.745	25.5	NA	53.25	NA	3
8	1	DTFRKLFRVYSNFNR	L149N	136	150	26	15.745	21.75	61.75	NA	NA	3
9	1	DTFRKLGRVYSNFLR	F142G	136	150	25.075	14.82	31	NA	50.75	NA	3
10	1	DTFRKLFDVYSNFLR	R143D	136	150	24.75	14.495	35.5	NA	49.25	NA	3
11	1	DTFRKKFRVYSNFLR	L141K	136	150	24.525	14.27	23	NA	59	NA	3
12	1	DTFRKLFRVYSNFCR	L149C	136	150	24.25	13.995	36	64	NA	NA	3
13	1	DTFRKCFRVYSNFLR	L141C	136	150	23.85	13.595	23.5	NA	73	NA	3
14	1	DTFRKLFRVYSCFLR	N147C	136	150	23.75	13.495	39.75	50	NA	NA	3
15	1	DTFRKDFRVYSNFLR	L141D	136	150	23.5	13.245	27.5	NA	62.5	NA	3
16	1	DTFRKGFRVYSNFLR	L141G	136	150	23.5	13.245	27	NA	57.5	NA	3
17	1	DTFRKLFRVYSNFKR	L149K	136	150	23.5	13.245	28	59	NA	NA	3
18	1	DTFRKLFRVYSNFER	L149E	136	150	22.75	12.495	34	62	NA	NA	3
19	1	DTFRKLERVYSNFLR	F142E	136	150	22.7	12.445	31	NA	48	NA	3
20	1	DTFRKLCRVYSNFLR	F142C	136	150	22.4	12.145	31	NA	50.25	NA	3
21	1	DTERKI TRV/VSNELR	F1/12T	136	150	22 175	11 92	30	NA	/18 75	NA	2

Analysis Tools Recap

• Help to examine existing sets of epitopes and gain new knowledge across a broad array of applications

Analyze T cell epitopes with known HLA restriction that are recognized in a population based on HLA frequencies

Conservancy

Population

Coverage

Investigate epitope conservancy across different protein sequences.

Cluster

Cluster epitopes on the basis of homology

RATE (Restrictor Analysis)

Deimmunization

Infer HLA restrictions for epitopes of T cell response frequency in HLA typed subjects

Identify immunodominant regions in a given protein, and suggest amino-acid substitutions that create non-immunogenic versions of the protein.