

PEPMatch: A Tool to Identify Short Peptide Sequence Matches in Large Sets of Proteins

Presented by: Daniel Marrama, Associate Bioinformatics Specialist I

1

Peptide Sequence Matching

Common Tools for Peptide Sequence Matching

Curation for IEDB

A large peptidome dataset improves HLA class I epitope prediction across most of the human population

Siranush Sarkizova^{1,2,13}, Susan Klaeger ^{(0,2,13}, Phuong M. Le³, Letitia W. Li³, Giacomo Oliveira³, Hasmik Keshishian², Christina R. Hartigan², Wandi Zhang³, David A. Braun^{2,3,4,5}, Keith L. Ligon^{2,4,6,7}, Pavan Bachireddy^{2,3,5}, Ioannis K. Zervantonakis ⁽⁰⁾⁸, Jennifer M. Rosenbluth ⁽⁰⁾⁸, Tamara Ouspenskaia², Travis Law ⁽⁰⁾², Sune Justesen⁹, Jonathan Stevens¹⁰, William J. Lane ^{(0)4,10}, Thomas Eisenhaure², Guang Lan Zhang^{3,4,11}, Karl R. Clauser², Nir Hacohen ^{(0)2,3,12*}, Steven A. Carr ^{(0)2*}, Catherine J. Wu ^{(0)2,3,4,5,11*}

Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I-associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines.

Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals

Graphical Abstract

Authors

Alba Grifoni, Daniela Weiskopf, Sydney I. Ramirez, ..., Davey M. Smith, Shane Crotty, Alessandro Sette

Correspondence

shane@lji.org (S.C.), alex@lji.org (A.S.)

In Brief

An analysis of immune cell responses to SARS-CoV-2 from recovered patients identifies the regions of the virus that is targeted and also reveals cross-reactivity with other common circulating coronaviruses

Neoepitope Similarity For Cancer Vaccine Candidates

Overwijk, W., et al. Nat Med (2015)

Schumacher TN, et al. Science. (2015)

Conservation Analyses

- Milk allergens → do conserved peptides in human proteome drive stronger reactions?
- Fungus allergens → does conservation across allergen species determine immunogenicity?
- COVID-19 vaccination → does the spike protein encoded by the mRNA vaccines have similar enough homology that could lead to autoimmune myocarditis?

T-cell epitope conservation across allergen species is a major determinant of immunogenicity

Luise Westernberg¹, Véronique Schulten¹, Jason A Greenbaum¹, Sara Natali³, Victoria Tripple¹, Denise M. McKinney¹, April Frazier¹, Heidi Hofer², Michael Wallner², Federica Sallusto^{3,4}, Alessandro Sette¹, and Bjoern Peters¹

Westernberg, Luise et al. Journal of Allergy and Clinical Immunology (2016)

PEPMatch: Tool Overview

PEPMatch: Exact Match Search

PEPMatch: Searching with Substitutions (Mismatches)

PEPMatch: Best Match Search

Benchmarking: Exact Matching Search

Task: Find 1,000 9-mers in the human proteome.

PEPMatch outperformed BLAST and other string searching algorithms.

2022 IEDB Workshop to low accuracy * excluded DIAMOND and MMseqs2 due

Benchmarking: Searching with Substitutions (Mismatches)

Task: Find 628 peptides of various lengths (8-15) in all betacoronavirus proteomes with 2 substitutions or less.

Tool	Proteome Preprocessing Time (s)	Query Preprocessing Time (s)	Searching Time (s)	Total Time (s)	Accuracy (%)
PEPMatch	40.7	N/A	51.9	92.6	100
NmerMatch	280.7	0.003	25.2	305.9	100
BLAST	0.61	N/A	156.2	156.8	73.4
DIAMOND	0.25	N/A	6.38	6.63	6.34
MMseqs2	3.76	N/A	1.14	4.90	7.34

PEPMatch and NmerMatch outperformed BLAST in speed and accuracy. They outperformed DIAMOND and MMseqs2 in accuracy by a lot. NmerMatch takes longer to preprocess.

Benchmarking: Best Match Search

Task: Find the best match of 111 15-mers in the human proteome. Some matches may have 7-8 mismatches.

Tool	Proteome Preprocessing Time (s)	Query Preprocessing Time (s)	Searching Time (s)	Total Time (s)	Accuracy (%)
PEPMatch	45.2	N/A	155.4	200.6	100
NmerMatch	52.02	0.001	356.1	410.1	100
BLAST	0.56	N/A	18.21	18.77	24.3
DIAMOND	0.18	N/A	4.24	4.42	12.4
MMseqs2	2.98	N/A	0.64	3.62	15.0

PEPMatch outperformed NmerMatch in speed and BLAST, DIAMOND and MMseqs2 in accuracy.

Using PEPMatch

Command Line

dan@foxp3 ~]\$ pip install pepmatch > pepmatch-preprocess -p 9606.fasta > -k 5 -f sql

[dan@foxp3 ~]\$ pepmatch-match -q peptides.fasta
> -p 9606 -m 0 -k 5

Python Module

#!/usr/bin/env python3

from pepmatch import Preprocessor, Matcher

Preprocessor('human_proteome.fasta', k=5, preprocess_format='sql').preprocess()
Matcher('peptides.fasta', 'human_proteome', k=5, max_mismatches=0).match()

Soon to be on the IEDB!

Thank you for listening!