

Cancer Epitope Database and Analysis Resource (CEDAR)

Presented by: Alessandro Sette, IEDB Principal Investigator

Cancer Epitopes are derived from Cancer Antigens

Coulie et al, Nat Rev Cancer. 2014 Feb

Motivation for the CEDAR Project

- IEDB hosts epitope data for
 - Allergy
 - Infectious diseases
 - Autoimmune diseases
 - Transplantation / Alloantigens
 - But <u>NOT</u> Cancer

We received funding from the **National Cancer Institute** to develop a resource for cancer epitopes

Motivation for the CEDAR Project (II)

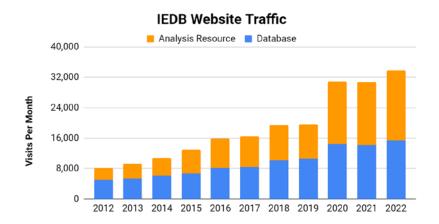
IMPORTANCE

- Cancer epitopes play a key role in cancer immunology and immunotherapy
- They are important in understanding the biological mechanisms associated with treatment efficacy and developing more effective therapeutic approaches

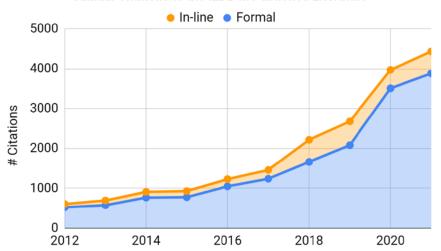
COMMUNITY NEED

- Several resources attempted to catalog cancer epitopes (e.g. TANTIGEN, CAPED, NEPdb, dbPepNEO, etc.)
 - Existing resources do not capture all epitope data in a granular fashion linked to the biological, immunological, and clinical contexts
 - All resources only provide limited computational prediction and analysis tools

We developed The Cancer Epitope Database and Analysis Resource to fill these gaps


Building on IEDB's Success

(Immune Epitope Database, www.iedb.org)


19 years of experience and learnings

Tried and tested IT and curation processes

Engaged user base with continuous growth over the years

Annual Citations to the IEDB in Published Literature

Cancer Epitope Database and Analysis Resource (CEDAR)

Database

Analysis Resource

Comprehensively cataloging all cancer epitope-related data linked to the biological, immunological, and clinical contexts

Computational epitope prediction and analysis tools providing researchers access to predictive strategies and objective evaluations of their performance

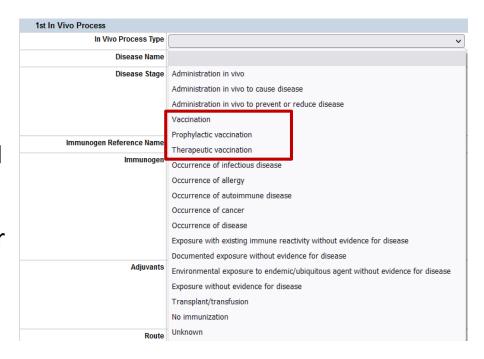
Specific Aims of the CEDAR Project

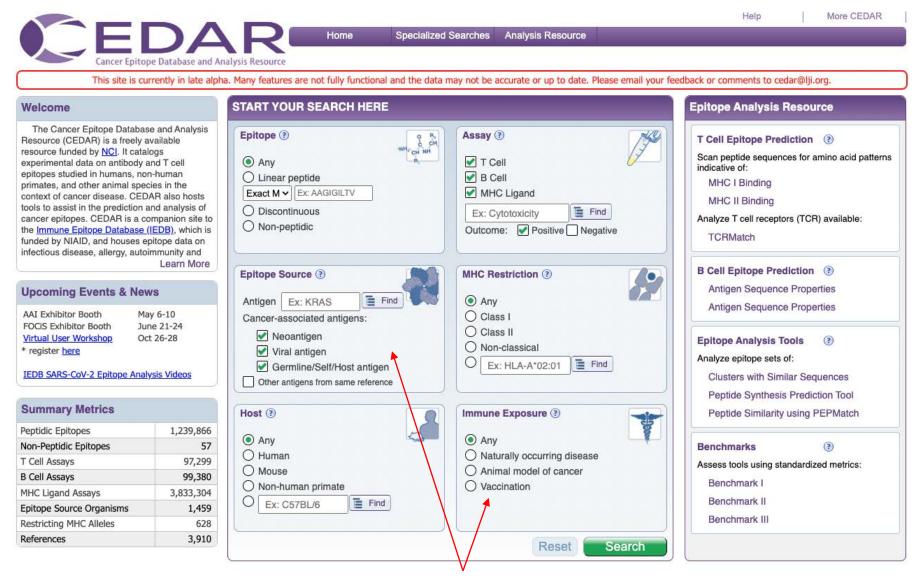
1) Establish the CEDAR database, ontology, and query and reporting functionality

2) Curate literature epitope data, relevant to cancer immunology

3) Provide a validated set of cancer epitope prediction and analysis tools

4) Implement a multifaceted outreach program to engage the cancer research community


Establish the CEDAR database, ontology, and query and reporting functionality



CEDAR Database Design Process

- Reached Out to Experts: Interviewed cancer experts to identify important search fields for cancer research
- <u>Prototyped User Interfaces:</u> Designed database query interface wireframes
- <u>Introduced Cancer Curation Rules</u>, for example:
 - i. Captured cancer types in more detail
 - ii. Distinguished vaccination types (prophylactic / therapeutic)
 - iii. Distinguished between allo- and xeno-adoptive transfer.

The CEDAR database base is available at cedar.iedb.org

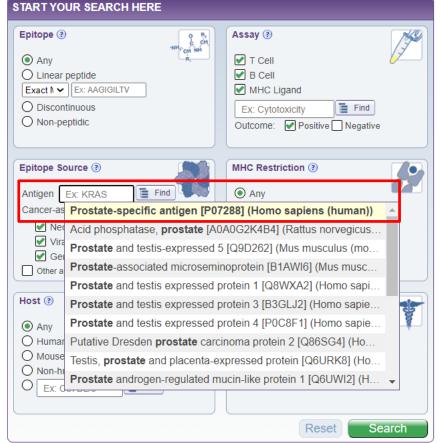
Cancer-specific search parameters

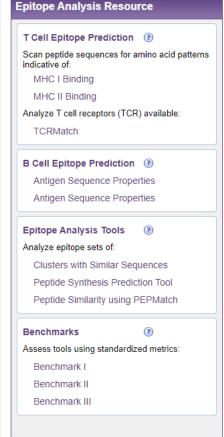
Example Query: Prostate-specific Antigen

This site is currently in late alpha. Many features are not fully functional and the data may not be accurate or up to date. Please email your feedback or comments to cedar@lji.org,

The Cancer Epitope Database and Analysis Resource (CEDAR) is a freely available resource funded by NCI. It catalogs experimental data on antibody and T cell epitopes studied in humans, nonhuman primates, and other animal species in the context of cancer disease. CEDAR

Welcome

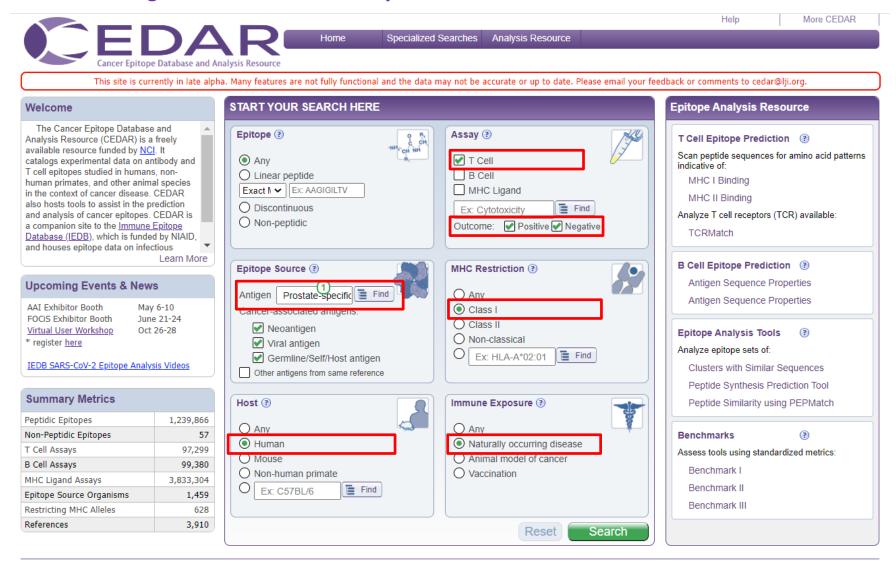

human primates, and other animal species in the context of cancer disease. CEDAR also hosts tools to assist in the prediction and analysis of cancer epitopes. CEDAR is a companion site to the Immune Epitope Database (IEDB), which is funded by NIAID, and houses epitope data on infectious


Upcoming Events & News

AAI Exhibitor Booth May 6-10
FOCIS Exhibitor Booth June 21-24
<u>Virtual User Workshop</u> Oct 26-28
* register <u>here</u>

IEDB SARS-CoV-2 Epitope Analysis Videos

Summary Metrics Peptidic Epitopes 1,239,866 Non-Peptidic Epitopes 57 T Cell Assays 97,299 B Cell Assays 99,380 MHC Ligand Assays 3,833,304 Epitope Source Organisms 1,459 Restricting MHC Alleles 628 References 3,910


Provide Feedback | Help Request | Solutions Center | Tool Licensing Information

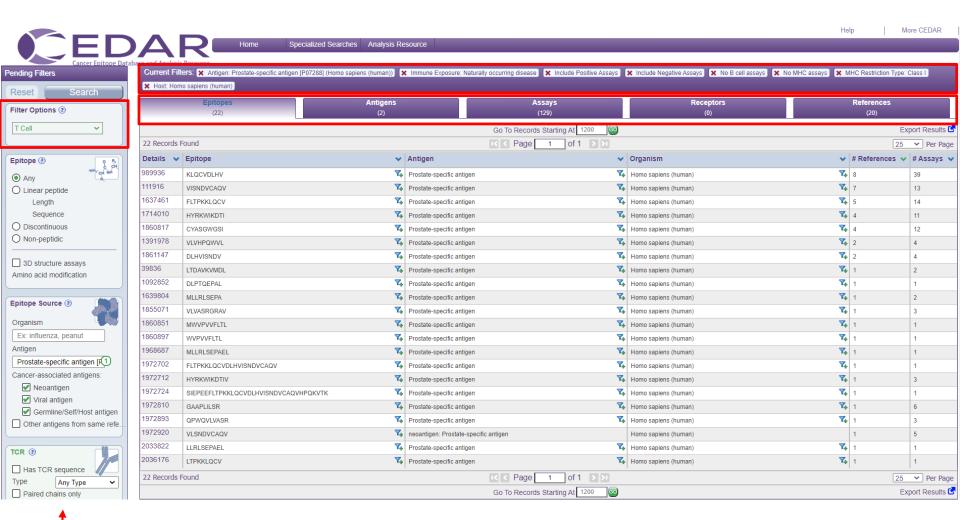
Supported by a grant from the National Cancer Institute, a component of the National Institutes of Health.

Last Updated: September 22, 2022

Example Query: Prostate-specific Antigen

Positive and negative data for T cell assay outcomes with MHC Class I restriction in human host

Provide Feedback | Help Request | Solutions Center | Tool Licensing Information


Supported by a grant from the National Cancer Institute, a component of the National Institutes of Health.

Last Updated: September 22, 2022

12

Example Results: Prostate-specific Antigen

Positive and negative data for T cell assays outcomes with MHC Class I restriction in human host

Query can be refined further on the 'Results' page via our 'Filter Options'

Curate literature epitope data, relevant to cancer immunology

Curation of cancer-related epitope data

PubMed / PDB

- Complex query
- Bi-weekly

240K retrieved

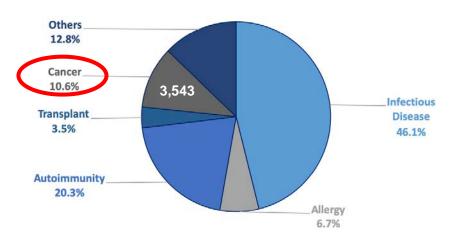
Classifier

- Content based categories
- Retrained annually

151K epitope related

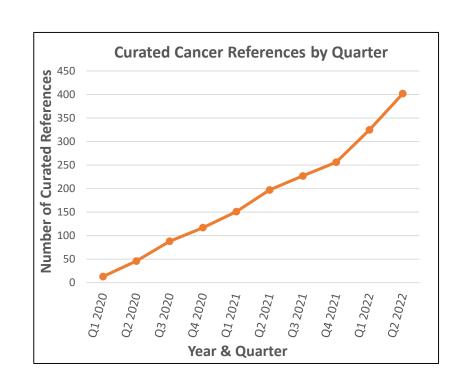
Abstract Review

- Manual scan
- Confirmation of classification


44K likely curatable

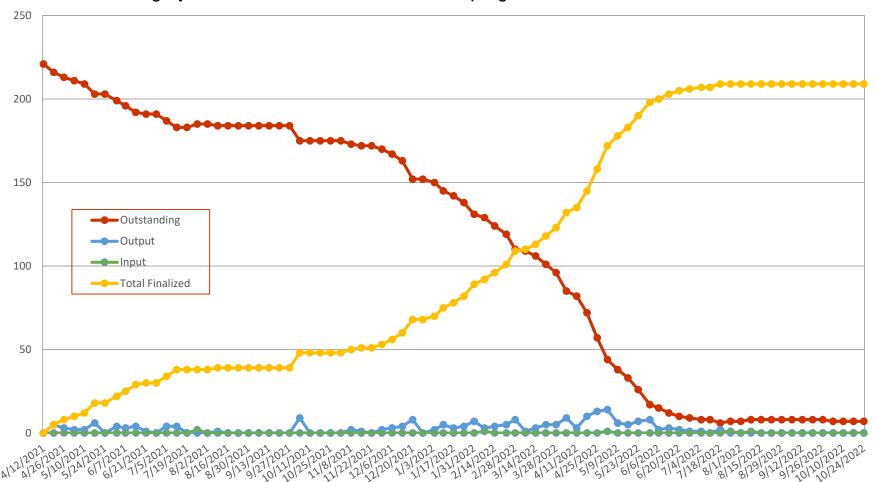
Manual Curation

- Assigned to curators
- Peer review


23K curated

Breakdown of Classified and Curatable References

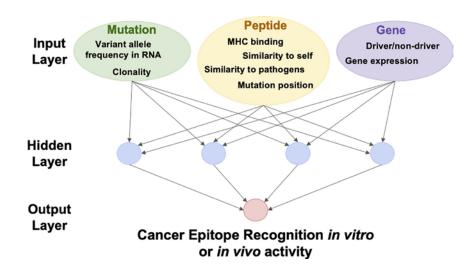
3,543 papers identified as cancer relevant


 Internal queue for curation: started with neoepitopes and prostate antigens

Prostate Cancer Curation

- **Neoepitope Category:**
- In progress 74% completion

- 209 references finalized (as at October 24)
- ~97% complete with this category
- Category maintenance with 7 references in progress



Provide a validated set of cancer epitope prediction and analysis tools

Overarching Analysis Resource Goals

- Provide prediction tools <u>tailored to the needs of cancer</u> <u>immunologists</u>
 - what neoepitopes are generated by a given mutation?
 - side-by-side predictions for mutant and wild-type peptides
- Develop <u>novel prediction tools</u> for cancer epitopes
 - combined assessment of expression and binding
 - include additional features when predicting epitopes

3

Overarching Analysis Resource Goals

- Provide web-implementations for published but hard to access cancer-epitope related tools in CEDAR
- Prioritize tools to implement in CEDAR based on cost-benefit analysis

Cell

Resource

Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction

Graphical Abstract

Authors

Daniel K. Wells, Marit M. van Buuren, Kristen K. Dang, ..., Ton N. Schumacher, Pia Kvistborg, Nadine A. Defranoux

A large peptidome dataset improves HLA class I epitope prediction across most of the human population

Siranush Sarkizova^{1,2,13}, Susan Klaeger^{©,2,13}, Phuong M. Le³, Letitia W. Li³, Giacomo Oliveira³, Hasmik Keshishian², Christina R. Hartigan², Wandi Zhang³, David A. Braun^{2,3,4,5}, Keith L. Ligon^{2,4,6,7}, Pavan Bachireddy^{2,3,5}, Ioannis K. Zervantonakis^{©,8}, Jennifer M. Rosenbluth^{©,8}, Tamara Ouspenskaia², Travis Law^{©,2}, Sune Justesen⁹, Jonathan Stevens¹⁰, William J. Lane^{©,4,10}, Thomas Eisenhaure², Guang Lan Zhang³, Karl R. Clauser², Nir Hacohen^{©,2,3,12,8}, Steven A. Carr^{©,2,8}, Catherine J. Wu^{©,2,3,4,5,18} and Derin B. Keskin^{©,2,4,5,118}

LETTER

doi:10.1038/nature24473

A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy

3

Use curated cancer epitope datasets to benchmark epitope prediction tools

- Assemble comprehensive sets of cancer epitope data
- Make available in simple format for bioinformaticians for tool training and testing
- Conduct benchmarks of prediction tools on cancer epitope datasets
 - Manual compile and run benchmarks (initially)
 - Automated benchmarks of all tools implemented in CEDAR, using newly curated data

Examples of benchmark targets for prediction tools

- What peptides in a tumor sample are processed and presented on MHC
- What neo-epitopes are recognized by T cells from a cancer patient?

Implement a multifaceted outreach program to engage the cancer research community

Community Outreach

2 Conference Booths Held

2 CEDAR-Specific Manuscripts Published To-Date

ORIGINAL RESEARCH article
Front. Immunol., 24 August 2021 | https://doi.org/10.3389/fimmu.2021.735609

The Cancer Epitope Database and Analysis Resource: A Blueprint for the Establishment of a New Bioinformatics Resource for Use by the Cancer Immunology Community

Zeynep Koşaloğlu-Yalçın:, Nina Blazeska', Hannah Carter²⁻⁾, Morten Nielsen⁴⁻⁾, Ezra Cohen³, Donald Kufe³, Jose Conejo-Garcia¹³, Paul Robbins³, Stephen P. Schoenberger²³, Bjoern Peters¹³ and Alessandro Sette¹³

1 The Cancer Epitope Database and Analysis Resource (CEDAR).

Koşaloğlu-Yalçın Z^{1 ©}, Blazeska N¹, Vita R¹, Carter H², Nielsen M^{3 ©}, Schoenberger S⁴, Sette A¹, Peters B¹

Author information >

Nucleic Acids Research, 17 Oct 2022, :gkac902 DOI: 10.1093/nar/gkac902 PMID: 36250634

9 Presentations or Posters Completed To-Date

#	Presentation Title	Presenter	Event	Date
1	Talk: The Cancer Epitope Database & Analysis Resource	Sette & Peters	NCI Cancer Moonshot IOTN WG Meeting	July 15, 2021
2	Talk: The Cancer Epitope Database & Analysis Resource	Sette & Peters	Bioinformatics and Computational Biology WG	July 23, 2021
3	Talk: The Cancer Epitope Database & Analysis Resource	Sette & Peters	ITCR Annual Conference	September 21, 2021
4	Talk: The Cancer Epitope Database & Analysis Resource	Kosaloglu- Yalcin	2021 IEDB Virtual User Workshop	October 28, 2021
5	Talk: Recent Progress Within Immunopeptidome Prediction	Nielsen	5th Neoantigen Summit Europe	April 28, 2022
6	Poster: The Cancer Epitope Database & Analysis Resource	Kosaloglu- Yalcin	RECOMB-CCB 2022	May 20, 2022
7	Talk: The Cancer Epitope Database & Analysis Resource	Kosaloglu- Yalcin	Dynamics of Immune Repertoires	July 14, 2022
8	Poster: The Cancer Epitope Database & Analysis Resource	Kosaloglu- Yalcin	SIXTH CRI-ENCI-AACR INTERNATIONAL CANCER IMMUNOTHERAPY CONFERENCE	September 28- October 1, 2022
9	Talk: The Cancer Epitope Database & Analysis Resource	Kosaloglu- Yalcin	2022 ITCR Investigators Meeting	September 12-14

- **1. AACR Annual Meeting:** April 8-13, 2022
- **2. FOCIS 2022**: June 21-24, 2022

Summary

CEDAR is an extension of the IEDB, containing cancer-related epitope data and tools

1

cedar.iedb.org is a working prototype cancer epitope database

2

Literature curation is moving rapidly, with prostate cancer category completed and neoepitope category 74% complete

3

Exiting tools will be adapted to the needs of cancer researchers and novel cancer-specific tools will be developed. Cancer benchmark datasets are being assembled.

4

Community engagement has been initiated and will increase as we have more to show

Looking forward...

Improved style and functionality!

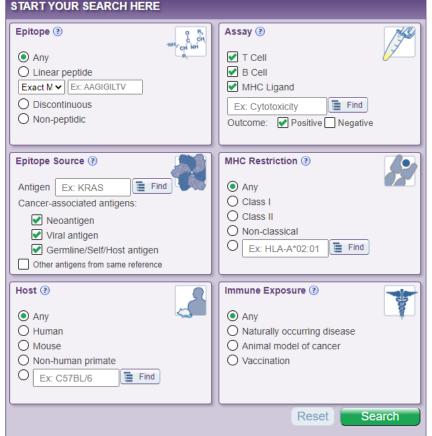
Home

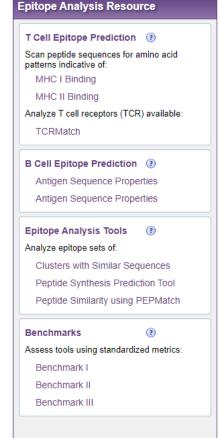
Specialized Searches

Analysis Resource

This site is currently in early alpha. Many features are not fully functional and the data may not be accurate or up to date. Please email your feedback or comments to cedar@lji.org

Welcome


The Cancer Epitope Database and Analysis Resource (CEDAR) is a freely available resource funded by NCI. It catalogs experimental data on antibody and T cell epitopes studied in humans, non-human primates, and other animal species in the context of cancer disease. CEDAR also hosts tools to assist in the prediction and analysis of cancer epitopes. CEDAR is a companion site to the Immune Epitope Database (IEDB), which is funded by NIAID, and houses epitope data on infectious disease, allergy, autoimmunity and


Upcoming Events & News

AAI Exhibitor Booth May 6-10
FOCIS Exhibitor Booth June 21-24
<u>Virtual User Workshop</u> Oct 26-28
* register <u>here</u>

IEDB SARS-CoV-2 Epitope Analysis Videos

Summary Metrics	ummary Metrics		
Peptidic Epitopes	180,422		
Non-Peptidic Epitopes	67		
T Cell Assays	34,957		
B Cell Assays	3,786		
MHC Ligand Assays	257,499		
Epitope Source Organisms	99		
Restricting MHC Alleles	256		
References	884		

Provide Feedback | Help Request | Solutions Center | Tool Licensing Information

Supported by a grant from the National Cancer Institute, a component of the National Institutes of Health

Last Updated: August 13, 2022

More CEDAR