The Immune Epitope Database Analysis Resource:

MHC class I peptide processing and immunogenicity predictions

Bjoern Peters IEDB Workshop Oct 23, 2018

Outline

- Motivation Factors apart from MHC binding determine what peptides are T-cell epitopes
- Processing tools in the IEDB
 - Interfaces + Prediction output
 - Performance / Caveats
- Immunogenicity tool
 - Interface + Prediction output
 - Performance / Caveats

CD8⁺ T cell epitopes in viral infection

CD8⁺ T cell epitopes in viral infection

— 11	ORF 1	M	I G	iQ		V	Т	М	F	E	A	L	Ρ	H			D	Е	V		Ν		V			V	L		V		Т	G		K	A	V	Y	Ν.	
T cell	ORF 2	М	G	i L	Κ	G	Ρ	D	I	Y	K	G	V	Y	Q	F	Κ	S	V	Е	F	D	М	S	Н	LI	Ν	Ľ	ΤI	М	Ρ	Ν	А	С	S	А	Ν	Ν.	
	ORF 3	Μ	ΙH	N	F	С	Ν	L	Т	S	А	F	Ν	K	Κ	Т	F	D	Н	Т	L	М	S	I	V	S :	S	L	-	L	S	I	D	G	Ν	S	Ν	Υ.	
epitope	ORF 4	Μ	I S	A	Q	S	Q	С	R	Т	F	R	G	R	V	L	D	М	F	R	Т	А	F	G	G	K `	Υľ	M	۲.	S	G	W	G	W	Т	G	S	D.	
manning	ORF 5	Μ	I H	С	Т	Y	А	G	Ρ	F	G	М	S	R	I	L	L	S	Q	Е	Κ	Т	Κ	F	F	ΓI	RI	R	L,	A	G	Т	F	Т	W	Т	L	S.	
mapping	ORF 6	Μ	K	С	F	G	Ν	Т	A	V	А	Κ	С	Ν	V	Ν	Н	D	А	Е	F	С	D	М	L	2	L) C	Y	Ν	Κ	А	А	L	S	Κ	F .	
	ORF 7	Μ	L	Μ	R	Ν	Η	L	L	D	L	Μ	G	V	Ρ	Y	С	Ν	Y	S	Κ	F	W	Υ	L	ΕI	ΗJ	AI	۲	Т	G	Е	Т	S	V	Ρ	K	С.	
																																							_

Peters et al, J Mol Biol 2002, Bioinformatics 2003, J Immunol.2003; CMLS 2005 ; Assarson, J Immunol 2007

Processing + immunogenicity tools available in the IEDB

- 'Combined predictor' Combines proteasomal cleavage and TAP transport predictions, trained on specific in vitro datasets
- Neural Network based predictors (NetChop, NetCTL)
- MHC-NP: Prediction of peptides naturally processed by the MHC
- Immunogenicity predictor

T Cell Epitope Prediction Tools

T Cell Epitopes - MHC Binding Prediction

These tools predict IC50 values for peptides binding to specific MHC molecules. Note that binding to MHC is necessary but not sufficient for recognition by T cells.

Peptide binding to MHC class I molecules

This tool will take in an amino acid sequence, or set of sequences and determine each subsequence's ability to bind to a specific MHC class I molecule.

Peptide binding to MHC class II molecules

This tool employs different methods to predict MHC Class II epitopes, including a consensus approach which combines NN-align, SMM-align and Combinatorial library methods.

TepiTool:

The Tepitool provides prediction of peptides binding to MHC class I and class II molecules. Tool is designed as a wizard with 6 steps as described below. Each field (except sequences and alleles) is filled with default recommended settings for prediction and selection of optimum peptides. The input parameters can be adjusted as per your specific needs. You can go back to previous steps to change your selection before submission of the job. Once you submit the job (at the end of step-6), you will not be able to make any more changes and will have to start the prediction all over again with updated input parameters.

T Cell Epitopes - Processing Prediction

These tools predict epitope candidates based upon the processing of peptides in the cell.

Proteasomal cleavage/TAP transport/MHC class I combined predictor

This tool combines predictors of proteasomal processing, TAP transport, and MHC binding to produce an overall score for each peptide's intrinsic potential of being a T cell epitope.

Neural network based prediction of proteasomal cleavage sites (NetChop) and T cell epitopes (NetCTL and NetCTLpan)

NetChop is a predictor of proteasomal processing based upon a neural network. NetCTL and NetCTLpan are predictors of T cell epitopes along a protein sequence. It also employs a neural network architecture.

MHC-NP: Prediction of peptides naturally processed by the MHC

MHC-NP employs data obtained from MHC elution experiments in order to assess the probability that a given peptide is naturally processed and binds to a given MHC molecule. This tool was the winner of the <u>2nd Machine Learning Competition in Immunology</u>.

T Cell Epitopes - Immunogenicity Prediction

This tool predicts the relative ability of a peptide/MHC complex to elicit an immune response.

T cell class I pMHC immunogenicity predictor

This tool uses amino acid properties as well as their position within the peptide to predict the immunogenicity of a class I peptide MHC (pMHC) complex.

MHC-I Processing Predictions

Prediction Method Version	2013-02-22 [Older versions]
	Specify Sequence(s)
Enter protein sequence(s) in FASTA format (Browse for sequences in NCBI)	
Or select file containing sequence(s)	Choose File No file chosen
Choose sequence format	auto detect format
	Choose a Prediction Method
Prediction Method	IEDB recommended Help on prediction method selections
	Specify what to make binding predictions for
MHC source species	human 🔻
Show only frequently occuring alleles: 🕑 🕐 Select MHC allele(s)	Allele Length Upload allele file
	Proteasomal cleavage prediction
Specify proteasome type	Proteasomal cleavage prediction
Specify proteasome type	Proteasomal cleavage prediction immuno TAP transport predictions
Specify proteasome type Maximum precursor extension	Proteasomal cleavage prediction immuno TAP transport predictions 1
Specify proteasome type Maximum precursor extension Alpha factor	Proteasomal cleavage prediction immuno TAP transport predictions 1 0.2
Specify proteasome type Maximum precursor extension Alpha factor	Proteasomal cleavage prediction immuno TAP transport predictions 0.2 Specify Output
Specify proteasome type Maximum precursor extension Alpha factor Output format	Proteasomal cleavage prediction immuno TAP transport predictions 1 0.2 Specify Output XHTML table

Submit Reset N.IEDB.ORG

Proteasomal cleavage

Proteasomal cleavage prediction									
Specify proteasome type	immuno 💌								
	TAP transport predictions								
Maximum precursor extension	1								
Alpha factor	0.2								

- Proteasomes create the C-terminal end of peptides. The prediction looks for a sequence motive up and downstream of a potential cleavage site
- Cleavage sequence motif was determined based on in vitro protein digests by proteasomes
- Choice between two types of proteasomes with slightly different motif constitutive or immuno (should be default choice)

TAP transport

	Proteasomal cleavage prediction
Specify proteasome type	immuno 💌
	TAP transport predictions
Maximum precursor extension	1
Alpha factor	0.2

- TAP transports peptides into the ER that can be further N-terminally trimmed before binding to MHC.
- The TAP transport efficiency of peptides is sequence dependent, and a motif was derived based on in vitro assays
- The overall TAP transport efficiency of a presented MHC ligand can be the result of a collection of precursors.
- The parameters shown describe that collection. Unless you read the paper and know something about the precursor length distribution, keep parameters unchanged

Difference in prediction output

Allele	#	Start	End	PepLength	Sequence	Proteasome Score	TAP Score	MHC Score	Processing Score	Total Score	MHC IC50[nM]
H-2-Kb	1	1	10	10	MGQIVTMFEA	0.91	-0.29	-4.36	0.62	-3.74	22777.84
H-2-Kb	1	2	11	10	GQIVTMFEAL	1.51	0.42	-3.93	1.93	-2.00	8485.76
H-2-Kb	1	3	12	10	QIVTMFEALP	0.65	0.13	-4.49	0.77	-3.72	31246.67
H-2-Kb	1	4	13	10	IVTMFEALPH	0.65	-0.20	-4.11	0.45	-3.67	12949.50
H-2-Kb	1	5	14	10	VTMFEALPHI	1.24	0.28	-3.59	1.52	-2.06	3850.57
H-2-Kb	1	6	15	10	TMFEALPHII	1.06	0.34	-3.52	1.40	-2.11	3273.98
H-2-Kb	1	7	16	10	MFEALPHIID	1.13	-0.75	-4.23	0.37	-3.85	16798.51

- Higher scores = higher efficiency for MHC-I presentation
- MHC binding score = $-\log 10(IC50)$ (\rightarrow sign change)
- Combined scores are additive
 - Processing = proteasome + TAP
 - Total = proteasome + TAP + MHC
- Different variance in scores reflects different selectivity
 - Proteasome (1.7) < TAP (2.8) < MHC (6.7)

Caveats / performance of processing predictions

- Processing predictions beat MHC binding predictions when predicting eluted peptides
- So far, there is no clear evidence that processing predictions are better at predicting **epitopes**
- Issues are:
 - All data has been derived for *human* proteasome and TAP; most well defined epitopes are mapped in mice (which has different TAP specificity)
 - Eluted peptides may over represent 'best possible' ligands, and the difference in processing may not be relevant in practice
- <u>Recommendation</u>: Use MHC binding predictions alone by default. If resources require limiting the number of peptides considered, use total score of processing predictions as an additional filter.

T Cell Epitope Prediction Tools

T Cell Epitopes - MHC Binding Prediction

These tools predict IC50 values for peptides binding to specific MHC molecules. Note that binding to MHC is necessary but not sufficient for recognition by T cells.

Peptide binding to MHC class I molecules

This tool will take in an amino acid sequence, or set of sequences and determine each subsequence's ability to bind to a specific MHC class I molecule.

Peptide binding to MHC class II molecules

This tool employs different methods to predict MHC Class II epitopes, including a consensus approach which combines NN-align, SMM-align and Combinatorial library methods.

TepiTool:

The Tepitool provides prediction of peptides binding to MHC class I and class II molecules. Tool is designed as a wizard with 6 steps as described below. Each field (except sequences and alleles) is filled with default recommended settings for prediction and selection of optimum peptides. The input parameters can be adjusted as per your specific needs. You can go back to previous steps to change your selection before submission of the job. Once you submit the job (at the end of step-6), you will not be able to make any more changes and will have to start the prediction all over again with updated input parameters.

T Cell Epitopes - Processing Prediction

These tools predict epitope candidates based upon the processing of peptides in the cell.

Proteasomal cleavage/TAP transport/MHC class I combined predictor

This tool combines predictors of proteasomal processing, TAP transport, and MHC binding to produce an overall score for each peptide's intrinsic potential of being a T cell epitope.

Neural network based prediction of proteasomal cleavage sites (NetChop) and T cell epitopes (NetCTL and NetCTLpan)

NetChop is a predictor of proteasomal processing based upon a neural network. NetCTL and NetCTLpan are predictors of T cell epitopes along a protein sequence. It also employs a neural network architecture.

MHC-NP: Prediction of peptides naturally processed by the MHC

MHC-NP employs data obtained from MHC elution experiments in order to assess the probability that a given peptide is naturally processed and binds to a given MHC molecule. This tool was the winner of the <u>2nd Machine Learning Competition in Immunology</u>.

T Cell Epitopes - Immunogenicity Prediction

This tool predicts the relative ability of a peptide/MHC complex to elicit an immune response.

T cell class I pMHC immunogenicity predictor

This tool uses amino acid properties as well as their position within the peptide to predict the immunogenicity of a class I peptide MHC (pMHC) complex.

Additional processing predictions

- NetChop (proteasomal cleavage)
- NetCTL (combines NetChop, TAP transport, NetMHC)
- NetCTLpan (combines NetChop, TAP transport, NetMHCpan)
- \rightarrow Key difference is the use of NetChop

IEDB Analysis Resource

Home	Help	Example	Reference	L	Contact
------	------	---------	-----------	---	---------

NetChop/NetCTL/NetCTLpan

Choose a Prediction Method										
Prediction Method	NetCHOP									
	Specify Sequence(s)									
Enter protein equence(s) in FASTA format	<pre>>BHB191648 gi:90572034 gb:CY010133 UniProtKB:Q1WPY8 Gene Symbol:M2 Protein Name:Matrix protein 2 Organism:Influenza A Virus A/Canterbury/100/2000 Segment:7 Subtype:H1N1 Host:Human MSLLTEVETPIRNEWGCRCNDSSDPLVVAASIIGIVHLILWIIDRLFSKSIYRIFKHGLKH TEGVPESMREEYREEQQNAVDADDGHFVSIELE >BHB191653 gi:90572040 gb:CY010136 UniProtKB:Q1WPY3 Gene Symbol:NS1 Protein Name:Nonstructural protein</pre>									
Or select file containing sequence(s)	Choose File No file chosen									
	Method Specific Options									
Method	C term 3.0 -									
Threshold	0.5									

Submit

NetChop 3.0

- Predicts C-terminal cleavage based on two approaches
 - *C-term 3.0*: C-terminal residues found for MHC ligands
 - 20S 3.0: Cleavage sites based on in vitro protein digests
- C-term 3.0 is not truly a proteasome predictor but performs better.
- NetCTL and NetCTLPan use C-term 3.0 by default

References

- Peters et al, JMB 2002 (proteasome)
- Peters et al, J Immunol 2003 (TAP)
- Tenzer et al, CMLS, 2005 (combined)
- Nielsen, Immunogenetics, 2005 (NetChop)
- Larsen, BMC Bioinformatics, 2007 (NetCTL)
- Stranzl, Immunogenetics, 2010 (NetCTLPan)

T Cell Epitope Prediction Tools

T Cell Epitopes - MHC Binding Prediction

These tools predict IC50 values for peptides binding to specific MHC molecules. Note that binding to MHC is necessary but not sufficient for recognition by T cells.

Peptide binding to MHC class I molecules

This tool will take in an amino acid sequence, or set of sequences and determine each subsequence's ability to bind to a specific MHC class I molecule.

Peptide binding to MHC class II molecules

This tool employs different methods to predict MHC Class II epitopes, including a consensus approach which combines NN-align, SMM-align and Combinatorial library methods.

TepiTool:

The Tepitool provides prediction of peptides binding to MHC class I and class II molecules. Tool is designed as a wizard with 6 steps as described below. Each field (except sequences and alleles) is filled with default recommended settings for prediction and selection of optimum peptides. The input parameters can be adjusted as per your specific needs. You can go back to previous steps to change your selection before submission of the job. Once you submit the job (at the end of step-6), you will not be able to make any more changes and will have to start the prediction all over again with updated input parameters.

T Cell Epitopes - Processing Prediction

These tools predict epitope candidates based upon the processing of peptides in the cell.

Proteasomal cleavage/TAP transport/MHC class I combined predictor

This tool combines predictors of proteasomal processing, TAP transport, and MHC binding to produce an overall score for each peptide's intrinsic potential of being a T cell epitope.

Neural network based prediction of proteasomal cleavage sites (NetChop) and T cell epitopes (NetCTL and NetCTLpan)

NetChop is a predictor of proteasomal processing based upon a neural network. NetCTL and NetCTLpan are predictors of T cell epitopes along a protein sequence. It also employs a neural network architecture.

MHC-NP: Prediction of peptides naturally processed by the MHC

MHC-NP employs data obtained from MHC elution experiments in order to assess the probability that a given peptide is naturally processed and binds to a given MHC molecule. This tool was the winner of the <u>2nd Machine Learning Competition in Immunology</u>.

T Cell Epitopes - Immunogenicity Prediction

This tool predicts the relative ability of a peptide/MHC complex to elicit an immune response.

T cell class I pMHC immunogenicity predictor

This tool uses amino acid properties as well as their position within the peptide to predict the immunogenicity of a class I peptide MHC (pMHC) complex.

MHC-NP: Prediction of Peptides Naturally Processed by the MHC

Developed by: Sébastien Giguère Alexandre Drouin, Alexandre Lacoste, Mario Marchand, Jacques Corbeil and François Laviolette

	Specify Sequence(s)
Enter protein sequence(s) in FASTA format (Browse for sequences in NCBI)	
Or select file containing sequence(s)	Choose File No file chosen
Choose sequence format	auto detect format
	Specify what to make binding predictions for
Select MHC allele(s)	Allele Length Image: Constrained by the second se
	H-2-Db ipecify Output
Sort peptides by	H-2-KD HLA-A*02:01 HLA-B*07:02
Output format	HLA-B*35:01 HLA-B*44:03
	HLA-B*53:01 Submit Reset

© 2005-2018 | IEDB Home Supported by a contract from the National Institute of Allergy and Infectious Diseases, a component of the National Institutes of Health in the Department of Health and Human Services.

Coming soon: Pan-predictions trained on both binding + eluted ligand data

NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data

Vanessa Jurtz, Sinu Paul, Massimo Andreatta, Paolo Marcatili, Bjoern Peters and Morten Nielsen

J Immunol 2017; 199:3360-3368; Prepublished online 4 October 2017;

T Cell Epitope Prediction Tools

T Cell Epitopes - MHC Binding Prediction

These tools predict IC50 values for peptides binding to specific MHC molecules. Note that binding to MHC is necessary but not sufficient for recognition by T cells.

Peptide binding to MHC class I molecules

This tool will take in an amino acid sequence, or set of sequences and determine each subsequence's ability to bind to a specific MHC class I molecule.

Peptide binding to MHC class II molecules

This tool employs different methods to predict MHC Class II epitopes, including a consensus approach which combines NN-align, SMM-align and Combinatorial library methods.

TepiTool:

The Tepitool provides prediction of peptides binding to MHC class I and class II molecules. Tool is designed as a wizard with 6 steps as described below. Each field (except sequences and alleles) is filled with default recommended settings for prediction and selection of optimum peptides. The input parameters can be adjusted as per your specific needs. You can go back to previous steps to change your selection before submission of the job. Once you submit the job (at the end of step-6), you will not be able to make any more changes and will have to start the prediction all over again with updated input parameters.

T Cell Epitopes - Processing Prediction

These tools predict epitope candidates based upon the processing of peptides in the cell.

Proteasomal cleavage/TAP transport/MHC class I combined predictor

This tool combines predictors of proteasomal processing, TAP transport, and MHC binding to produce an overall score for each peptide's intrinsic potential of being a T cell epitope.

Neural network based prediction of proteasomal cleavage sites (NetChop) and T cell epitopes (NetCTL and NetCTLpan)

NetChop is a predictor of proteasomal processing based upon a neural network. NetCTL and NetCTLpan are predictors of T cell epitopes along a protein sequence. It also employs a neural network architecture.

MHC-NP: Prediction of peptides naturally processed by the MHC

MHC-NP employs data obtained from MHC elution experiments in order to assess the probability that a given peptide is naturally processed and binds to a given MHC molecule. This tool was the winner of the <u>2nd Machine Learning Competition in Immunology</u>.

T Cell Epitopes - Immunogenicity Prediction

This tool predicts the relative ability of a peptide/MLC complex to elicit an immune response.

T cell class I pMHC immunogenicity predictor

This tool uses amino acid properties as well is their position within the peptide to predict the immunogenicity of a class I peptide MHC (pMHC) complex.

Immunogenicity prediction

non-immunogenic

 Approach: Assemble two datasets of peptides with similar MHC binding affinity, that are immunogenic

0.10

- 1) recognized or 2) not recognized by T cells
- 0.05 \rightarrow Enrichment of W,F,I and depletion of S,M,K in immunogenic peptide
- \rightarrow Use enrichments to calculate propensity scores

WWW.IEDB.ORG

Immunogenicity prediction - interface

Home Help Example Reference Download Contact

Class I Immunogenicity

	Specify sequence(s) *
Enter peptide sequence(s) (Browse for sequences in NCBI)	FIAGLIAIV LITGRLQSL RLNEVAKNL KAVYNFATC FQPQNGQFI
Or select file containing sequence(s)	Choose File No file chosen
	Choose which positions to mask
Specify which positions to mask	 ● Default (1st, 2nd, and C-terminus amino acids) ● Custom User Defined ▼ ● (Comma separated numbers) Peptide lengths must be equal when using custom masking.
	Submit Reset

*The tool was only validated for 9-mer peptides. However, predictions can be made for peptides of any length.

© 2005-2018 | IEDB Home

Supported by a contract from the National Institute of Allergy and Infectious Diseases, a component of the National Institutes of Health in the Department of Health and Human Services.

Mask positions that are MHC anchors

Immunogenicity prediction - output

Home Help Example Reference Download Contact

Class | Immunogenicity

Masking: **default** Masked variables: [1, 2, 'cterm']

Peptide 🔶	Length 🗢	Score 🔻
FIAGLIAIV	9	0.27206
KAVYNFATC	9	0.16928
RLNEVAKNL	9	-0.0101
LITGRLQSL	9	-0.10776
FQPQNGQFI	9	-0.12392

Download result 🗷

- Scores are sums of propensity scores at all unmasked predictions
- High scores = peptide is more likely to be immunogenic

Caveats / Prediction performance

- Experimentally, many MHC binding peptides can be immunogenic (~50%)
- Cross validation gave AUC values ~ 0.65. Test on independent blind set gave AUC = 0.69
- Recommendation: Use as filter (cutoff 0) if high specificity is desired. Suggested cutoff is 0.

Questions?

