The Immune Epitope Database Analysis Resource

Epitope Analysis Tools: Adding value to epitope datasets

> Bjoern Peters IEDB User Workshop October 23, 2018

IEDB Analysis Resource

	ew	

Analysis Tools

Analysis Tools

The tools below are intended for the detailed analysis of a known epitope sequence or group of sequences.

Population Coverage

This tool calculates the fraction of individuals predicted to respond to a given set of epitopes with known MHC restrictions. This calculation is made on the basis of HLA genotypic frequencies assuming non-linkage disequilibrium between HLA loci.

Epitope Conservancy Analysis

This tool calculates the degree of conservancy of an epitope within a given protein sequence set at different degrees of sequence identity. The degree of conservation is defined as the fraction of protein sequences containing the epitope at a given identity level.

Epitope Cluster Analysis

This tool groups epitopes into clusters based on sequence identity. A cluster is defined as a group of sequences which have a sequence similarity greater than the minimum sequence identity threshold specified.

Computational Methods for Mapping Mimotopes to Protein Antigens

This page provides information on available methods for mimotope mapping, how to search the IEDB for mimotopes, and an example of a mimotope dataset and the results of its mapping, using the available web servers hosted outside the IEDB.

RATE (Restrictor Analysis Tool for Epitopes)

The RATE is an automated method that can infer HLA restriction for a set of given epitopes from large datasets of T cell responses in HLA typed subjects. The tool takes two data files, one containing the alleles expressed by the subjects and the other containing the response of the peptides in the subjects. The tool calculates the odds ratio and estimates its significance using Fisher's exact test. It also calculates a parameter called relative frequency similar to odds ratio. The tool was developed with a focus on class II alleles but can also be applied to class I alleles.

Epitope Cluster Analysis Tool 2.0

This tool groups epitopes into clusters based on sequence identity. A cluster is defined as a group of sequences which have a sequence similarity greater than the minimum sequence identity threshold specified. User can also select the minimum and maximum length of peptide and also one of the three approaches for clustering of peptides.

ImmunomeBrowser

The tool is helpful to aggregate and visualize immune reactivity from epitope data in different assays/donors in given reference proteins using user-defined identity thresholds. The tool also accepts predicted epitopes.

💄 : Tools under AR Labs which are experimental and are not quite ready for production yet. They are intended for further research, updates and testing.

IEDB Help Contact

This site is best viewed with current versions of Mozilla Firefox or Google Chrome

© 2005-2018 | IEDB Home

Supported by a contract from the National Institute of Allergy and Infectious Diseases, a component of the National Institutes of Health in the Department of Health and Human Services.

Population Coverage

- Calculates the fraction of individuals predicted to respond to a given set of epitopes with known MHC restrictions
- Based on HLA genotypic frequencies assuming nonlinkage disequilibrium between HLA loci
- HLA genotypic frequencies have been updated with more comprehensive dataset (*http://allelefrequencies.net* rather than *dbMHC*)

Population Coverage

Number of epitope(s):	Set		
Query by	area_country_ethnicity • *		

Select area(s) and/or population(s):	Select calculation option	n(s):
World East Asia Japan	Class I separate	
Japan Oriental		Query: For a set of 11 MHC
Korea; South Korea; South Oriental Mongolia Mongolia Oriental Northeast Asia	Class II separate	class II restricted epitopes with promiscuous HLA binding, what is the
China China Oriental Hong Kong Hong Kong Oriental	Class I and II combined	population coverage in different North African
Add user populations(s) ③: Choose File No file chosen		populations?

Submit Reset

4

www.IEDB.org

* Population datasets generously provided by Derek Middleton at The Allele Frequency Net Database

Epitope	MHC Restricted Allele(s)
	Browse
	Browse
IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE	

Reference

Population Coverage Calculation

Number of epitope(s): 11

Set

Query by: Area, Country and Ethnicity 🔻 *				
<u>Select area(s)</u>	Select calculation option(s):			
- North Africa - Algeria - Arab	^	Class I separate		
- Ethiopia - Black - Mali		🗹 Class II separate		
- Black - Morocco - Arab		Class I and II combined		
Add user p	opulation(s)	Compute Reset		

* Population datasets generously provided by Derek Middleton at <u>The Allele Frequency Net Database</u>

Click here to load epitope / MHC restriction data from file

In the second second

No.	<u>Epitope</u>	MHC Restricted Allele(s)
1	Gag 171	HLA-DRB1*01:01, HLA-DRB1*15:01, HLA-DRB1*04:01, HLA-DRB1*04:05, HLA-DRB1*1 Browse
2	Gag 294	HLA-DRB1*01:01, HLA-DRB1*15:01, HLA-DRB1*04:05, HLA-DRB1*11:01, HLA-DRB1*1 Browse
3	Gag 298	HLA-DRB1*01:01, HLA-DRB1*15:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-DRB1*0 Browse
4	Pol 303	HLA-DRB1*01:01, HLA-DRB1*15:01, HLA-DRB1*03:01, HLA-DRB1*04:05, HLA-DRB1*0 Browse
5	Pol 335	HLA-DRB1*01:01, HLA-DRB1*15:01, HLA-DRB1*04:05, HLA-DRB1*13:02, HLA-DRB1*0 Browse
6	Pol 596	HLA-DRB1*01:01, HLA-DRB1*15:01, HLA-DRB1*04:01, HLA-DRB1*04:05, HLA-DRB1*1 Browse

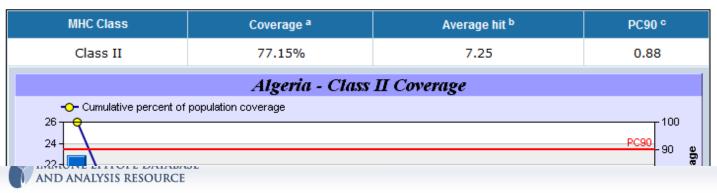
Reference

WWW.IEDB.ORG

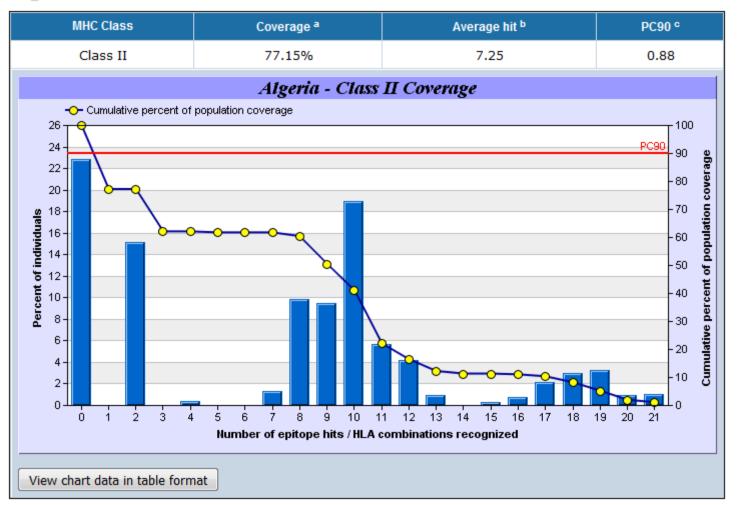
Contact

Population Coverage Calculation Result

Dopulation / Area	Class II				
Population / Area	Coverage ^a	Average hit ^b	PC90 °		
<u>Algeria</u>	77.15%	7.25	0.88		
<u>Ethiopia</u>	83.00%	8.71	1.18		
Mali	0.00%	0.00	?		
Morocco	83.44%	8.14	1.21		
<u>Sudan</u>	60.56%	4.52	0.51		
<u>Tunisia</u>	74.26%	6.82	0.78		
Average (Standard deviation)	63.07% (29.21%)	5.91 (2.95)	? (?)		


Summary of Results in Table; breakdown in individual graphs

a projected population coverage


 $^{\mathbf{b}}$ average number of epitope hits / HLA combinations recognized by the population

^c minimum number of epitope hits / HLA combinations recognized by 90% of the population

Algeria

Algeria

7

EDB.ORG

- a projected population coverage
- ^b average number of epitope hits / HLA combinations recognized by the population
- ^c minimum number of epitope hits / HLA combinations recognized by 90% of the population

View coverage of individual epitope in Algeria Back to top

AND ANALYS Ethiopia

Epitope Conservancy Analysis

- Calculates the degree of conservancy of an epitope within a given protein sequence set at different degrees of sequence identity
- Degree of conservation is defined as the fraction of protein sequences containing the epitope at a given identity level.
- Example: How conserved are influenza A epitopes discovered prior to 2009 in the pandemic Swine flu?

Epitope Conservancy Analysis - Mozilla Firefox							
ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp							
🔇 💽 🗸 🖒 🗋 http://tools.im	 C × In the http://tools.immuneepitope.org/tools/conservancy/iedb_input Interpitope.org/tools/conservancy/iedb_input 						
Epitope Conservancy An	alysis						
Step 1. Epitope Sequence(s)							
Enter epitope sequence(s) in PLAIN or FASTA format: 🕐	EVETPIRN GLFGAIAGF GLFGAIAGFIE GTLVKTITDDQIEV HHPSTNQEQTSLYVQAS MSLLTEVETLTRNGWECKCRDSSD MSLLTEVETLTRNGWGCRCSDSSD MSLLTEVETPIRNEWGCRCNDSSD NVPEKQTRGIFGAIAGFIE						
Or upload epitope sequence(s) from a file: 🕐	Browse Click here to upload						
Step 2. Protein Sequence(s)							
Enter protein sequence(s) in PLAIN or FASTA format: 🕐	<pre>>gi 229609555 gb ACQ83397 /Human/HA/H1N1/Sweden/2009/04/30/ hemagglutinin[Influenza A virus (A/Stockholm/28/2009(H1N1))] MKAILVVLLYTFATANADTLCIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDKHNGKLCKLRGVAPLHLG KCNIAGWILGNPECESLSTASSWSYIVETSSSDNGTCYPGDFIDYEELREQLSSVSSFERFEIFPKTSSW PNHDXNKGVTAACPHAGAKSFYKNLIWLVKKGNSYPKLSKSYINDKGKEVLVLWGIHHPSTSADQQSLYQ NADAYVFVGSSRYSKKFKPEIAIRPKVRDQEGRMNYYWTLVEPGDKITFEATGNLVVPRYAFAMERNAGS GIIISDTPVHDCNTTCQTPKGAINTSLPFQNIHPITIGKCPKYVKSTKLRLATGLRNVPSIQSRGLFGAI AGFIEGGWTGMVDGWYGYHHQNE 55 Pandemic flu strain sequences (2009)</pre>						
Or upload protein sequence(s) from a file: 🕐	Click here to upload						
<u>Click here</u> to browse for sequences in N	CBI 🕐						

Epitope Conservancy Analysis Result - Mozilla Firefox

<u>File Edit View History Bookmarks Tools Help</u>

X

http://tools.immuneepitope.org/tools/conservancy/SummaryDisplay;jsessionid=10CD188528D9 🏠 👔 🔹

G • Google

Download data to file

С

•

Epitope No. <u>▲</u> ▼	Epitope name	Epitope sequence	Epitope length	Percent of protein sequence matches at identity ≥100% <u>▲</u> <u>▼</u>	Minimum identity	Maximum identity <u>▲</u> ⊻	View details
1	1	EVETPIRN	8	0.00% (0/439)	12.50%	75.00%	<u>Go</u>
2	2	GLFGAIAGF	9	12.53% (55/439)	22.22%	100.00%	Go
3	3	GLFGAIAGFIE	11	12.53% (55/439)	18.18%	100.00%	<u>Go</u>
4	4	GTLVKTITDDQIEV	14	0.00% (0/439)	21.43%	35.71%	Go
5	5	HHPSTNQEQTSLYVQAS	17	0.00% (0/439)	17.65%	58.82%	<u>Go</u>
6	6	MSLLTEVETLTRNGWECKCRDSSD	24	0.00% (0/439)	12.50%	79.17%	Go
7	7	MSLLTEVETLTRNGWGCRCSDSSD	24	0.00% (0/439)	12.50%	83.33%	<u>Go</u>
8	8	MSLLTEVETPIRNEWGCRCNDSSD	24	0.00% (0/439)	12.50%	83.33%	Go
9	9	NVPEKQTRGIFGAIAGFIE	19	0.00% (0/439)	21.05%	78.95%	Go
10	10	SKAFSNCYPYDVPDYASL	18	0.00% (0/439)	16.67%	44.44%	Go
11	11	SLLTEVETPIRNEWGCRCNDSS	22	0.00% (0/439)	13.64%	81.82%	Go
12	12	SLLTEVETPIRNEWGCRCNDSSD	23	0.00% (0/439)	13.04%	82.61%	<u>Go</u>
13	13	WTGVTQN	7	0.00% (0/439)	0.00%	57.14%	<u>Go</u>
14	14	LTEVETPIRN	10	0.00% (0/439)	20.00%	80.00%	Go
15	15	MSLLTEVETPTKNEWECRCNDSSD	24	0.00% (0/439)	12.50%	87.50%	<u>Go</u>
16	16	SLLTEVET	8	19.59% (86/439)	25.00%	100.00%	Go
17	17	VETPIRN	7	0.00% (0/439)	14.29%	71.43%	<u>Go</u>

3

Ei

http://tools.immuneepitope.org/tools/conservancy/DetailDisplay?homology=100&index=1&lessGreater=ge

Conservancy analysis for epitope #2

Epitope name	Epitope sequence	Epitope length	Percent of protein sequence matches at identity ≥100			
2	GLFGAIAGF	9	12.53% (55/439)			
Show records with identity ≥ ▼ 100% ▼ Show records Download data to file						

Protein No. ▲ ▼	Protein name	Positions	Protein sub-sequence(s)	Identity
1	gi 228860929 gb ACQ45338 /Human/HA/H1N1/Netherlands/2009/04/29/ hemagglutinin[Influenza A virus (A/Netherlands/602/2009(H1N1))]	345-353	GLFGAIAGF	100.00
3	gi 227809925 gb ACP41145 /Human/HA/H1N1/China/2009/03/11/ hemagglutinin[Influenza A virus (A/Yuelu/314/2009(H1N1))]	324-332	GLFGAIAGF	100.00
7	gi 227809830 gb ACP41105 /Human/HA/H1N1/USA/2009/04/01/ hemagglutinin[Influenza A virus (A/California/04/2009(H1N1))]	345-353	GLFGAIAGF	100.00
14	gi 227831759 gb ACP41926 /Human/HA/H1N1/USA/2009/03/30/ hemagglutinin[Influenza A virus (A/California/05/2009(H1N1))]	345-353	GLFGAIAGF	100.00
22	gi 227831774 gb ACP41934 /Human/HA/H1N1/USA/2009/04/15/ hemagglutinin[Influenza A virus (A/Texas/05/2009(H1N1))]	345-353	GLFGAIAGF	100.00
23	gi 227831776 gb ACP41935 /Human/HA/H1N1/USA/2009/04/16/ hemagglutinin[Influenza A virus (A/California/06/2009(H1N1))]	345-353	GLFGAIAGF	100.00
41	gi 227831808 gb ACP41953 /Human/HA/H1N1/USA/2009/04/09/ hemagglutinin[Influenza A virus (A/California/07/2009(H1N1))]	345-353	GLFGAIAGF	100.00
51	gi 227831826 gb ACP41963 /Human/HA/H1N1/USA/2009/04/14/ hemagglutinin[Influenza A virus (A/Texas/04/2009(H1N1))]	345-353	GLFGAIAGF	100.00
54	gi 227977099 gb ACP44147 /Human/HA/H1N1/USA/2009/04/25/ hemagglutinin[Influenza A virus (A/New York/19/2009(H1N1))]	345-353	GLFGAIAGF	100.00
57	gi 227977104 gb ACP44150 /Human/HA/H1N1/USA/2009/04/08/	245-252	GLEGATAGE	100.00

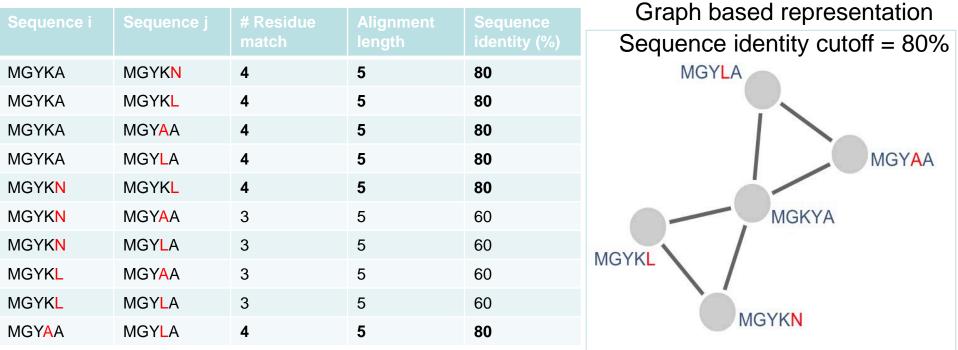
Epitope Cluster Analysis

- Groups epitopes into clusters based on having sequence identity greater than a specified threshold.
- Three different clustering approaches are implemented
- Enables diverse applications such as generating epitope pools, and understanding cross-reactivity

Clustering tool: Data input

IEDB Analysis Resource		Epitope Cluster Analys	sis	
Home Help Example Reference Contact		step 2/3 Specify filters		
Epitope Cluster Analysis		Select Sequence Identity Th	nreshold	
step 1/3 Specify input peptides Specify Sequence(s)		Select minimum sequence identity threshold:	80% -	
	MGYKA MGYKN	Select canonical peptides		
Enter epitope sequence(s) in PLAIN or FASTA format	MGYKL MGYAA MGYLA Selec	Select minimum Peptide length:	No minimum length	
	Drawing	Select maximum Peptide length:	No Maximum Length 🗾	
Or upload epitope sequence(s) from a file	Browse	Start Over	Go to Step 3	

Epitope Cluster Analysis

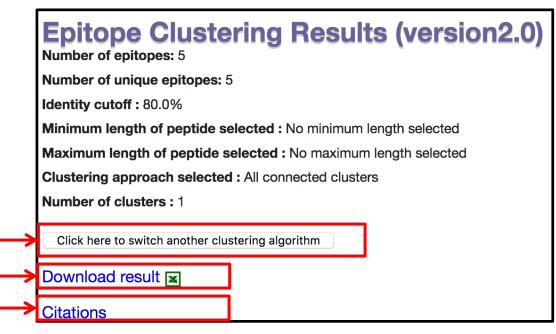

step 3/3 Specify clustering algorithm

Se	lect Clustering approach
Choose clustering method:	All the connected peptides in a cluster ✓ Cluster-break for clear representative sequence Fully intercomposted elusters (eligues)
Go back to Step 2	Fully intereconnected clusters (cliques)

DB.ORG

Assessing pairwise sequence identity identifies groups

Sequence identity matrix


Two possible grouping

Cluster: All peptides connected through a path are grouped together **Clique**: Only fully connected sets of peptides are grouped together. There will be two cliques in this example.

14

WWW IEDB ORG

Show Table	Graphical Visualization			
		sition	Description	Peptide
ualize a selecte			-	-
(seq3	MGYKL
			seq4	MGYAA
			seq2	MGYKN
	MGYKA		seq1	MGYKA
			seq5	MGYLA
				www.IE

Example: Cross reactivity

- <u>Problem</u>: We have a newly identified set of 23
 T cell epitopes derived from mouse proteins
 recognized by mouse allergic humans
- The IEDB lists 19 T cell epitopes defined from rat proteins that are homologous to the mouse protein studied. Are the recognized epitopes related?

Clustering tool reveals groups of overlapping mouse and rat derived epitopes

Cluster Number	Peptide Number	Alignment	Position	Description	Peptide
1	Consensus	TFQLMXLYGRXXDLSSDIKEKFAKLCEA	-	-	-
1	1	TFQLMVLYGRTKDLSSDIKE	1	Rat Pep17	TFQLMVLYGRTKDLSSDIKE
1	2	GLYGREPDLSSDIKERFA	6	Mus Pep3	GLYGREPDLSSDIKERFA
1	3	YGREPDLSLDIKEK	8	Mus Pep7	YGREPDLSLDIKEK
1	4	GRTKDLSSDIKEKFAKLCEA	9	Rat Pep9	GRTKDLSSDIKEKFAKLCEA
2	Consensus	YDRYVMXHLINXKXGETFQLMXLYGRTK	-	-	-
2	1	YDRYVMFHLINFKNGETFQL	1	Rat Pep19	YDRYVMFHLINFKNGETFQL
2	2	AHLINEKDGETFQLM	7	Mus Pep9	AHLINEKDGETFQLM
2	3	LINFKNGETFQLMVLYGRTK	9	Rat Pep12	LINFKNGETFQLMVLYGRTK
2	4	NEKDGETFQLMGLY	11	Mus Pep6	NEKDGETFQLMGLY
3	Consensus	EENGSMRVFXXHIXVLENSL	-	-	-
3	1	EENGSMRVFMQHIDVLENSL	1	Rat Pep4	EENGSMRVFMQHIDVLENSL
3	2	GSMRVFVEHIHVLEN	4	Mus Pep16	GSMRVFVEHIHVLEN
4	Consensus	FXXHIXVLENSLXFKFRIKE	-	-	-
4	1	FMQHIDVLENSLGFKFRIKE	1	Rat Pep6	FMQHIDVLENSLGFKFRIKE
4	2	FVEHIHVLENSLAFK	1	Mus Pep2	FVEHIHVLENSLAFK
5	Consensus	RXNIIDLTKTXRCLXARG	-	-	-
5	1	RDNIIDLTKTDRCLQARG	1	Rat Pep14	RDNIIDLTKTDRCLQARG
5	2	-ENIIDLTKTNRCLKA	2	Mus Pep17	ENIIDLTKTNRCLKA
6	Consensus	GXWFSIXXASXKREKIEENG	-	-	-
6	1	GDWFSIVVASNKREKIEENG	1	Rat Pep8	GDWFSIVVASNKREKIEENG
6	2	-EWFSILLASDKREKI	2	Mus Pep4	EWFSILLASDKREKI
7	Consensus	EEASSTGRNFNVXKINGEWHTIIL	-	-	-
7	1	EEASSTGRNFNVQKINGEWHTIIL	1	Mus Pep10	EEASSTGRNFNVQKINGEWHTIIL
7	2	NVEKINGEWHTIIL	11	Mus Pep13	NVEKINGEWHTIIL
8	Consensus	FVEYDGXNTFTILKTDYDXY	-	-	-
8	1	FVEYDGGNTFTILKTDYDRY	1	Rat Pep7	FVEYDGGNTFTILKTDYDRY
8	2	DGFNTFTILKTDYDN-	5	Mus Pep5	DGFNTFTILKTDYDN 1/
9	Singleton	TFTILKTDYDRYVMFHLINF	-	Rat Pep18	TFTILKTDYDRYVMFHLINF

Summary of the Allergen data from mouse and rat using cluster method

- 19 peptide from Rat (Jeal et al. 2004)
- 23 peptide from Mouse (Schulten et al. 2018)
- Total clusters = 30
- Singletons=22 (10 Rat, 12 Mouse).
- Clusters with >=2 peptides = 8
- The mouse peptides that overlapped with Rat peptides were significantly more immunogenic than the singletons, suggesting that there might be a dominant immune response due to increased/repeated exposure.

RATE (Restrictor Analysis Tool for Epitopes)

http://iedb-rate.liai.org

Publications

Paul, S., Arlehamn, C. S. L., ... Peters, B., & Sette, A. (2017). Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes. BMC immunology, 18(1), 20.

Paul, S., Dillon, M.B., ... Peters, B. and Sette, A., 2015. A population response analysis approach to assign class II HLA-epitope restrictions. The Journal of Immunology, p.1403074

www.IEDB.org

RATE

- Automated method to infer HLA restriction of given epitopes from immune response data of HLA typed subjects
- The method is based on comparing the frequency of donors who expressed (& not expressed) a particular allele and there was immune response (& no response) towards an epitope.

RATE – home page

← → C ☆ ③ Not secure | tools.iedb.org/rate/

IEDB Analysis Resource - Labs

RATE (Restrictor Analysis Tool for Epitopes)

Enter data	
Allele data	Choose File No file chosen
Response data	Choose File No file chosen
Cutoff for response to be considered positive	
	Submit Reset

21 www.IEDB.org

RATE – Input

- Two data files need to be provided Allele data & response data
- The input data need to be in specified format
- Tab separated format in plain text file

RATE – Input: Allele data

 Sample data shown here – 12 class II alleles of 6 loci for each donor are listed in separate columns

	P33	• (*	f_{x}												
	А	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
1	Donor-1	Donor-2	Donor-3	Donor-4	Donor-5	Donor-6	Donor-7	Donor-8	Donor-9	Donor-10	Donor-11	Donor-12	Donor-13	Donor-14	Donor-15
2	DRB1*03:01	DRB1*11:01	DRB1*01:01	DRB1*07:01	DRB1*12:01	DRB1*11:02	DRB1*08:04	DRB1*11:01	DRB1*03:01	DRB1*04:01	DRB1*01:01	DRB1*04:01	DRB1*03:02	DRB1*03:01	DRB1*04:
3	DRB1*07:01	DRB1*15:03	DRB1*07:01	DRB1*15:03	DRB1*15:03	DRB1*13:02	DRB1*15:02	DRB1*13:02	DRB1*04:01	DRB1*07:01	DRB1*11:01	DRB1*15:01	DRB1*07:01	DRB1*14:04	DRB1*12:
4	DRB3*02:02	DRB3*02:02	DRB3*02:02	DRB4*01:03	DRB3*01:01	DRB3*02:02	DRB5*01:02	DRB3*02:02	DRB3*01:01	DRB4*01:03	DRB3*03:01	DRB4*01:01	DRB3*01:01	DRB3*01:01	DRB3*02:
5	DRB4*01:03	DRB5*01:01	DRB4*01:03	DRB5*01:01	DRB5*01:01	DRB3*03:01	n/a	DRB3*03:01	DRB3*02:02	DRB4*01:03	n/a	DRB5*01:01	DRB4*01:01	DRB3*02:02	DRB4*01:
6	DQA1*02:01	DQA1*01:02	DQA1*02:01	DQA1*01:02	DQA1*01:01	DQA1*01:02	DQA1*01:03	DQA1*01:02	DQA1*02:01	DQA1*02:01	DQA1*01:02	DQA1*02:01	DQA1*03:03	DQA1*02:01	DQA1*01
7	DQA1*05:01	DQA1*05:05	DQA1*05:01	DQA1*02:01	DQA1*01:02	DQA1*05:05	DQA1*04:01	DQA1*05:05	DQA1*05:01	DQA1*03:03	DQA1*01:02	DQA1*05:01	DQA1*04:01	DQA1*05:01	DQA1*03
8	DQB1*02:01	DQB1*06:02	DQB1*03:02	DQB1*02:02	DQB1*05:01	DQB1*03:19	DQB1*03:19	DQB1*06:09	DQB1*02:01	DQB1*02:02	DQB1*05:01	DQB1*06:02	DQB1*02:02	DQB1*02:01	DQB1*03
9	DQB1*05:03	DQB1*06:02	DQB1*03:02	DQB1*06:02	DQB1*06:02	DQB1*06:09	DQB1*06:01	DQB1*06:09	DQB1*03:02	DQB1*02:02	DQB1*06:02	DQB1*06:02	DQB1*02:02	DQB1*06:02	DQB1*06
10	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*02:01	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:
11	DPA1*02:01	DPA1*03:01	DPA1*02:01	DPA1*02:01	DPA1*03:01	DPA1*01:03	DPA1*02:02	DPA1*01:03	DPA1*02:01	DPA1*01:03	DPA1*02:02	DPA1*02:01	DPA1*03:01	DPA1*02:01	DPA1*03:
12	DPB1*13:01	DPB1*03:01	DPB1*17:01	DPB1*01:01	DPB1*18:01	DPB1*34:01	DPB1*01:01	DPB1*02:01	DPB1*01:01	DPB1*04:01	DPB1*01:01	DPB1*01:01	DPB1*04:01	DPB1*01:01	DPB1*18:
13	DPB1*17:01	DPB1*105:01	DPB1*01:01	DPB1*02:01	DPB1*105:01	DPB1*02:01	DPB1*13:01	DPB1*105:01	DPB1*17:01	DPB1*02:01	DPB1*04:02	DPB1*17:01	DPB1*105:01	DPB1*17:01	DPB1*105
14															
15															

RATE – Input: Response data

• The response data (here SFC values) for each epitope in each of the donors are provided

AA24	• (f _x											
А	В	С	D	E	F	G	Н	I.	J	К	L	М	N
Peptide #	Peptide_ID	Peptide_Seq	Donor-1	Donor-2	Donor-3	Donor-4	Donor-5	Donor-6	Donor-7	Donor-8	Donor-9	Donor-10	Donor-11 [
1	3531.0365	GINTIPIAINEAEYV	98	0	0	0	0	0	0	40	0	0	0
2	3531.0367	AAFQAAHARFVAAAA	68	0	50	0	0	0	0	0	0	0	77
3	3531.0514	AAVVRFQEAANKQKQ	0	55	0	0	0	0	0	0	0	0	0
4	3531.0494	ELFVAAYVPYVAWLV	0	0	0	0	n/a	n/a	0	0	0	0	0
5	3531.037	AAGTYVAADAAAAST	0	0	83	0	0	0	0	0	0	0	62

RATE – how it works

- Restrictions are determined based on
 - Odds ratio and significance estimated using Fisher's exact test.

$$OR = \frac{(A^{+}R^{+}) \times (A^{-}R^{-})}{(A^{-}R^{+}) \times (A^{+}R^{-})}$$

 "Relative frequency", a parameter estimated by the tool based on the frequency of alleles and donors responded

$$RF = \frac{A^{+}R^{+} / (A^{+}R^{+} + A^{+}R^{-})}{(A^{+}R^{+} + A^{-}R^{+}) / \text{Total donors}}$$
²⁵

RATE – results

Home	Help	Example	Reference	L	Download	L	Contact

RATE results

Input data summary	
Allele file	iedb-rate_sample_input_allele_data.txt
Response file	iedb-rate_sample_input_response_data.txt
No. of peptides	5
No. of subjects	50
Cutoff for response to be considered positive	20.0
No. of alleles expressed by subjects	90
Total peptide-allele restriction examinations done	5 x 90 = 450
Re-formatted allele data	Allele data
Re-formatted response data	Response data
HLA restriction results	
No. of unique peptides for which restriction is defined (in selected HLA restrictions)	4
Total no. of peptide-allele restrictions (in selected HLA restrictions)	5
RATE results (selected HLA restrictions)	RATE results
Complete report (analysis results for all peptide-allele combinations)	Complete report
Job id	1539919845
SOURCE	WWW

26 www.ieDB.org

RATE – results

- Epitope-allele combinations with RF ≥ 1.3 and p-value <
 0.01 are considered significant.
- Significant results selected by RATE for the example files

R15	•	f _x											
А	В	С	D	E	F	G	Н	1	J	K	L	М	N
Peptide#	Peptide_id	peptide_seq	Allele#	Allele	A+R+	A-R+	A+R-	A-R-	No_of_Donors	Response_n/a	Relative_freq	Odds_ratio	P-value
1	3531.0365	GINTIPIAINEAEYV	84	DRB3*02:02	6	0	18	26	50	0	2.083	inf	0.008
2	3531.0367	AAFQAAHARFVAAAA	54	DRB1*01:01	4	8	0	38	50	0	4.167	inf	0.002
2	3531.0367	AAFQAAHARFVAAAA	65	DRB1*07:01	5	7	2	36	50	0	2.976	12.857	0.006
3	3531.0514	AAVVRFQEAANKQKQ	89	DRB5*01:01	7	2	8	30	47	3	2.437	13.125	0.002
5	3531.037	AAGTYVAADAAAAST	54	DRB1*01:01	4	2	0	44	50	0	8.333	inf	0.000

RATE – complete report

• Complete report - all epitopes

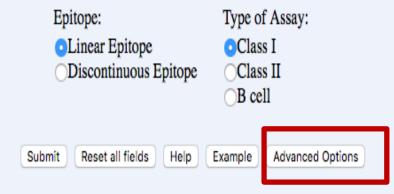
V42	~ (fx f											
А	В	С	D	E	F	G	Н	1	J	К	L	М	N
Peptide#	Peptide_id	peptide_seq	Allele#	Allele	A+R+	A-R+	A+R-	A-R-	No_of_Donors	Response_n/a	Relative_	Odds_rati	P-value
1	3531.0365	GINTIPIAINEAEYV	1	DPA1*01:03	5	1	34	10	50	0	1.068	1.471	1.000
2	3531.0367	AAFQAAHARFVAAAA	1	DPA1*01:03	10	2	29	9	50	0	1.068	1.552	1.000
3	3531.0514	AAVVRFQEAANKQKQ	1	DPA1*01:03	8	1	28	10	47	3	1.160	2.857	0.663
4	3531.0494	ELFVAAYVPYVAWLV	1	DPA1*01:03	1	0	36	11	48	2	1.297	inf	1.000
5	3531.037	AAGTYVAADAAAAST	1	DPA1*01:03	5	1	34	10	50	0	1.068	1.471	1.000
1	3531.0365	GINTIPIAINEAEYV	2	2 DPA1*01:04	0	6	1	43	50	0	0.000	0.000	1.000
2	3531.0367	AAFQAAHARFVAAAA	2	2 DPA1*01:04	0	12	1	37	50	0	0.000	0.000	1.000
3	3531.0514	AAVVRFQEAANKQKQ	2	2 DPA1*01:04	0	9	1	37	47	3	0.000	0.000	1.000
4	3531.0494	ELFVAAYVPYVAWLV	2	2 DPA1*01:04	0	1	1	46	48	2	0.000	0.000	1.000
5	3531.037	AAGTYVAADAAAAST	2	2 DPA1*01:04	0	6	1	43	50	0	0.000	0.000	1.000
1	3531.0365	GINTIPIAINEAEYV	3	B DPA1*02:01	3	3	20	24	50	0	1.087	1.200	1.000
2	3531.0367	AAFQAAHARFVAAAA	3	B DPA1*02:01	5	7	18	20	50	0	0.906	0.794	1.000
3	3531.0514	AAVVRFQEAANKQKQ	3	B DPA1*02:01	3	6	18	20	47	3	0.746	0.556	0.711
4	3531.0494	ELFVAAYVPYVAWLV	3	B DPA1*02:01	0	1	23	24	48	2	0.000	0.000	1.000
5	3531.037	AAGTYVAADAAAAST	3	B DPA1*02:01	2	4	21	23	50	0	0.725	0.548	0.674
1	3531.0365	GINTIPIAINEAEYV	4	DPA1*02:02	1	5	10	34	50	0	0.758	0.680	1.000
2	3531.0367	AAFQAAHARFVAAAA	4	DPA1*02:02	2	10	9	29	50	0	0.758	0.644	1.000
3	3531.0514	AAVVRFQEAANKQKQ	4	DPA1*02:02	1	8	10	28	47	3	0.475	0.350	0.663
4	3531.0494	ELFVAAYVPYVAWLV	4	DPA1*02:02	0	1	11	36	48	2	0.000	0.000	1.000
5	3531.037	AAGTYVAADAAAAST	4	DPA1*02:02	1	5	10	34	50	0	0.758	0.680	1.000
1	3531.0365	GINTIPIAINEAEYV	5	5 DPA1*03:01	0	6	9	35	50	0	0.000	0.000	0.576
2	3531.0367	AAFQAAHARFVAAAA	5	5 DPA1*03:01	2	10	7	31	50	0	0.926	0.886	1.000
3		AAVVRFQEAANKQKQ	5	5 DPA1*03:01	2	7	6	32	47	3			
AND	ANALYSIS R	E DATABASE Esource									WWW	IEDB/	.ORG

EPIFILTER

- Generate a validated set of reference epitopes for B cell, MHC class I and Class II
- Available with IEDB query search results
- Different filters can be applied to epitopes and assays
- Recommended settings are set as default and can be changed in "advanced options"
- Results can be exported in csv file.

IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE Ref: Pro et. al. 2015, Journal of Immunology Research WWW.IEDB.org

EPIFILTER – tool link


	10pes 967)	Antigen (3)	IS Assays (22171)		Receptors (0)		ences 76)
Megapool N	Naker 🔟		Go To Records Starting	At 1200 GO)	Export Epitor	oes Results 🗙
7967 Record	is Found		R Rage 1	of 319 > >I		25	Per Page
Details 🗸	Epitope	*	Antigen 🗸	Organism	~	# References 🗸	# Assays 🗸
74558	YLAGAGLAF	7,	Genome polyprotein	Dengue virus	7 4	14	19
38400	LPAIVREAI	7,	Genome polyprotein	Dengue virus	7 4	12	27
124151	FTMRLLSPV	7,	Genome polyprotein	Dengue virus	7 4	12	24
73429	YAQMWTLMY	7,	Genome polyprotein	Dengue virus	7 .	11	16
5223	ATYGWNLVK	7,	Genome polyprotein	Dengue virus	7 .	10	18
37557	LLLTLLATV	74	Genome polyprotein	Dengue virus	7 ,	10	22
41093	MANIFRGSY	7,	Genome polyprotein	Dengue virus	7 .	10	13
56309	RVIDPRRCL	7,	Genome polyprotein	Dengue virus	7 ,	10	15
73428	YAQMWSLMY	7.	Genome polyprotein	Dengue virus	7.	10	15

EPIFILTER – parameter selection page

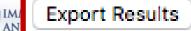
IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE

Megapool Maker T and B cell Epitopes

Megapool generates reference datasets of high quality epitopes based on query input parameters.

Database maintained by the Immune Epitope Database

EPIFILTER – advanced options


Epitope Size Minimum 8 0 Maximum 11 0		Minimum Assays Product	Sort epitopes by: Response Frequency O	Response Frequency Threshold:
Clustering:		Effector Origin Multiplier:		
No		Ex-Vivo 4 🔅 In-Vitro 1 🔅	No	
Assay Score:				
3D structure	2 🗘			
binding assay	1 🗘			
Cytotoxicity	2 🗘			
Degranulation	0 🗘			
Helper response	0 🗘			
in vivo assay	0 🗘			
MHC tetramer/multimer staining	з 🗘			
Proliferataion Assays	1 🗘			
ELISPOT	1 🗘			
Intracellular cytokine staining (ICS)	2 🗘			
Other cytokine assays	0 🗘			

EPIFILTER – result page

IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE												
No.	Epitope/Cluster Sequence:	Epitope ID:	Source Organism	Source Protein:	MHC Restriction:	Response Coefficient:	Assay Score:	Assay Type:	Effector Origin:			
1	GTSGSPIVDR	22824	Dengue virus 2	Genome polyprotein	HLA-A*11:01, HLA-A11	0.71	3	multimer/tetramer	Cell Line / Clone			
2	AIVREAIKR	133501	Dengue virus 1	Genome polyprotein	HLA-A*02:01	0.59	4	ELISPOT	Direct Ex Vivo			
3	APIMDEEREI	150133	Dengue virus 2	Genome polyprotein	HLA-B*07:02, HLA-B*53:01	0.59	4	ELISPOT	Direct Ex Vivo			
4	DYMPSMKRF	10927	Dengue virus 2	Genome polyprotein	HLA-A*24:02, HLA-A*24:03, HLA-A*23:01	0.55	4	ELISPOT	Direct Ex Vivo			
5	SPNPTVEAGR	150589	Dengue virus 2	Genome polyprotein	HLA-B*07:02	0.55	4	ELISPOT	Direct Ex Vivo			
6	RPTFAAGLLL	150540	Dengue virus 2	Genome polyprotein	HLA-B*07:02	0.55	4	ELISPOT	Direct Ex Vivo			
7	RSCTLPPLRY	150546	Dengue virus 2	Genome polyprotein	HLA-A*01:01, HLA-A*30:02	0.55	4	ELISPOT	Direct Ex Vivo			
8	TLYAVATTI	133716	Dengue virus 1	Genome polyprotein	HLA-A*02:01, HLA-A*02:03	0.54	4	ELISPOT	Direct Ex Vivo			
9	YLPAIVREA	150740	Dengue virus 1	Genome polyprotein	HLA-A*02:01, HLA-A*02:03	0.52	4	ELISPOT	Direct Ex Vivo			
10	DLMRRGDLPV	150167	Dengue virus 2	Genome polyprotein	HLA-A*02:01, HLA-A*02:17	0.52	4	ELISPOT	Direct Ex Vivo			
11	VLNPYMPTV	69672	Dengue virus 3	Genome polyprotein	HLA-A*02:01, HLA-A*02:03, HLA-A*02:17, HLA- A*02:12, HLA-A*02:19, HLA-A*02:11	0.51	4	ELISPOT	Direct Ex Vivo			

www.IEDB.org

Questions?

