

B cell epitope prediction

Swapnil Mahajan swapnil@lji.org

IEDB Workshop, 2018

Outline

- B cell epitopes: Discontinuous And linear epitopes
- Schema of B cell epitope prediction tools on IEDB
- Sequence-based epitope prediction methods:
 - Linear epitope prediction methods
- > 3D Structure-based epitope prediction methods:
 - Discontinuous epitope prediction methods
- Computational antibody design
 - Antigen and Antibody structure modelling
 - Antibody-protein docking

Discontinuous Epitope

Discontinuous Epitope

Discontinuous Epitope

B cell epitopes

- Protein antigens usually contain both linear (aka sequential or continuous) epitopes that may still bind to the antibody even when that protein is denatured
- and discontinuous (aka non-sequential or conformational) epitopes
- More than 90% of the B cell epitopes are estimated to be discontinuous^{*}.

*Barlow et al, Nature. 1986. *Van Regenmortel, Methods. 1996.

Schema of B cell epitope prediction tools Walk through

Schema of B cell epitope prediction tools

Schema of B cell epitope prediction tools

IEDB Analysis Resource

Tools-API Download Datasets Contribute Tools References	Download	Tools-API	Analysis Tools	B Cell Tools	T Cell Tools	Overview
---	----------	-----------	----------------	--------------	--------------	----------

B Cell Epitope Prediction Tools

B Cell Epitope Prediction

Prediction of linear epitopes from protein sequence

A collection of methods to predict linear B cell epitopes based on sequence characteristics of the antigen using amino acid scales and HMMs.

Discotope - Prediction of epitopes from protein structure

This method incorporates solvent-accessible surface area calculations, as well as contact distances into its prediction of B cell epitope potential along the length of a protein sequence.

ElliPro - Epitope prediction based upon structural protrusion

This method predicts epitopes based upon solvent-accessibility and flexibility.

Methods for modeling and docking of antibody and protein 3D structures

This page provides information on available methods for modeling and docking of antibody and protein 3D structures.

Structure Tools

LYRA (Lymphocyte Receptor Automated Modelling):

The LYRA server predicts structures for either T-Cell Receptors (TCR) or B-Cell Receptors (BCR) using homology modelling. Framework templates are selected based on BLOSUM score, and complementary determining regions (CDR) are then selected if needed based on a canonical structure model and grafted onto the framework templates.

Tools under AR Labs which are experimental and are not quite ready for production yet. They are intended for further research, updates and testing.

Schema of B cell epitope prediction tools

Click "Help", if you want to know more about a prediction method

Home Help Example Reference Download Contact

Antibody Epitope Prediction - Tutorial

I. Methods for predicting continuous antibody epitope from protein sequences

General basis: Parameters such as hydrophilicity, flexibility, accessibility, turns, exposed surface, polarity and antigenic propensity of polypeptides chains ha allow the position of continuous epitopes to be predicted from certain features of the protein sequence. All prediction calculations are based on propensity scal the basis of their relative propensity to possess the property described by the scale.

General method: When computing the score for a given residue *i*, the amino acids in an interval of the chosen length, centered around residue *i*, are consider compute the score for residue *i*. Unless specified, the score for residue *i* is the average of the scale values for these amino acids (see table 1 for specific method be antigenic.

Interpretation of output graphs and tables: On the graphs, the Y-axes depicts for each residue the correspondent score (averaged in the specified window residue positions in the sequence. The tables provide values of calculated scores for each residue. The larger score for the residues might be interpreted as the graphs). However, the presented methods do not predict the epitopes per se, either linear or discontinuous, -- they might only guide the researchers to further

Table 1. Implemented methods

Method

Chou and Fasman beta turn prediction

- Reference: Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol.
- Description: The rationale for predicting turns to predict antibody epitopes is based on the paper by <u>Pellequer et al, Immunology Letters, 36 (1993) 83-99</u>. I Chou and Fasman scale which is commonly used to predict beta turns as described in the reference link above.

Scale	e:																		
A	С	D	E	F	G	н	I	к	L	М	N	Р	Q	R	S	т	۷	w	Y
0.66	1.19	1.46	0.74	0.6	1.56	0.95	0.47	1.01	0.59	0.6	1.56	1.52	0.98	0.95	1.43	0.96	0.5	0.96	1.14

Emini surface accessibility scale

- Reference: Emini EA, Hughes JV, Perlow DS, Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. 19
- Description: The calculation was based on surface accessibility scale on a product instead of an addition within the window. The accessibility profile was c
 probability value, and i vary from 1 to 6. A hexapeptide sequence with Sn greater than 1.0 indicates an increased probability for being found on the surface

12

WWW IEDB ORG

Do you want to see how the result page of a prediction method looks?

Antibody Epitope Prediction - Example data

Select one of the example sequences below.

Choose an example sequence

Select Sequence	Sequence Name	Database	Sequence ID	
0	Sperm Whale Myoglobin	SwissProt	P02185	
0	Lysozyme	PDB	5LYM:A	
0	VP1 [Hepatitis A virus]	NCBI	252562	
0	Myohemerythin	PDB	2MHR	Click submit

13 www.IEDB.org

Citations

Home Help Example Reference Download Contact

References

Chou & Fasman Beta-Turn Prediction:

Chou PY, Fasman GD. 1978. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45-148. PMID: 364941

Emini Surface Accessibility Prediction:

Emini EA, Hughes JV, Perlow DS, Boger J. 1985. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836-839. PMID: 2991600

Karplus & Schulz Flexibility Prediction:

Karplus PA, Schulz GE. 1985. Prediction of chain flexibility in proteins. *Naturwissenschaften* **72**:212-213. <u>Naturwissenschaften</u>

Kolaskar & Tongaonkar Antigenicity:

Kolaskar AS, Tongaonkar PC. 1990. A semi-empirical method for prediction of antigenic determinants on protein antigens. *FEBS Lett*276:172-174. PMID: 1702393

Parker Hydrophilicity Prediction:

Parker JM, Guo D, Hodges RS. 1986. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. *Biochemistry* **25**:5425-5432. <u>PMID: 2430611</u>

Bepipred Linear Epitope Prediction:

Larsen JE, Lund O, Nielsen M. 2006. Improved method for predicting linear B-cell epitopes. *Immunome Res* 2:2. PMID: 16635264

Ponomarenko JV, Bourne PE. 2007. Antibody-protein interactions: benchmark datasets and prediction tools evaluation. *BMC Struct Biol* **7**:64. <u>PMID: 17910770</u>

Haste Andersen P, Nielsen M, Lund O. 2006. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. *Protein Sci* 15:2558-2567. PMID: 17001032

Do you need standalone versions?

Download Home Help Example Reference Contact

Antibody Epitope prediction - Download

Antibody Epitope Prediction tool contains collection of python scripts, specific binary for BepiPred and a pickled file containing residue scales for different methods.

- Chou & Fasman Beta-Turn Prediction
- Emini Surface Accessibility Prediction
- Karplus & Schulz Flexibility Prediction
- Kolaskar & Tongaonkar Antigenicity
- Parker Hydrophilicity Prediction
- Bepipred Linear Epitope Prediction

License Agreements

By downloading the standalone tool, you are consenting to be bound by and become a party as the "Licensee" for the use of NetMHC 3.0".

Also you are consenting the terms and conditions of the Non-Profit Open Software License ("Non-Profit OSL") version 3.0

Please read following two agreements before proceeding. If you do not agree to all of the terms of these two agreements, you must not click the download button, not install the product nor use the product, and you do not become a LICENSEE under these agreements.

ACADEMIC SOFTWARE LICENSE AGREEMENT FOR END-USERS AT PUBLICLY FUNDED ACADEMIC, EDUCATION OR RESEARCH INSTITUTIONS FOR THE USE OF NetMHC 3.0 By downloading the Software you are consenting to be bound by and become a party to this agreement as the "Licensee". If you do not agree to all of the terms of this agreement, you must not click the Acceptance button, not install the product nor use the product, and you do not

This Non-Profit Open Software License ("Non-Profit OSL") version 3.0 (the "Licen se") applies to any original work of authorship (the "Original Work") whose owne r (the "Licensor") has placed the following licensing notice adjacent to the cop yright notice for the Original Work:

Licensed under the Non-Profit Open Software License version 3.0

To download the tools in tar.gz format: Agree and Download

To return to the main page: Decline

IEDB Tools Downloads

Complete Download: IEDB Analysis Resource Virtual Machine Image

For users that would like to run the entire analysis resource locally, a virtual machine image file is available with a paid commercial license. The image is kept in sync with the current version of the IEDB Analysis Resource and is updated on a six month cycle. Please contact us for details on licensing options.

15

"Help will always be given at Hogwarts IEDB to those who ask for it."

IEDB solution Center help@iedb.org

Contact the developers

Should you require assistance beyond the help provided for each individual tool, please visit the <u>IEDB Solutions Center</u> or submit a request by clicking on the following link: <u>help@iedb.org</u>

Outline

- > **B cell epitopes**: Discontinuous And linear epitopes
- Schema of B cell epitope prediction tools on IEDB
- Sequence-based epitope prediction methods:
 - Linear epitope prediction methods
 - Amino acid physicochemical property-based methods
 - Machine learning approaches
- > 3D Structure-based epitope prediction methods:
 - Discontinuous epitope prediction methods
- Computational antibody design
 - Antigen and Antibody structure modelling
 - Antibody-protein docking

> When to use epitope prediction methods?

- When you have verified thoroughly that no information is available in the IEDB on the antigen of your interest or
- When you want to know all the candidate antigenic determinants in an antigen of your interest other than epitopes provided in the IEDB

Sequence-based epitope prediction

- ➤ Linear epitope prediction:
 - Amino acid physicochemical properties-based methods:
 - Features which have been correlated with the location of continuous epitopes
 - **β**-Turns (**Chou & Fasman**),
 - Surface Accessibility (Emini),
 - Flexibility (Karplus & Schulz),
 - antigenic propensity: occurrence of residues in epitopes (Kolaskar & Tongaonkar),
 - Hydrophilicity (**Parker**).
 - Only provide information on protein regions which might be of interest for antibody binding.
 - These are not prediction methods in a strict sense.

Linear epitope prediction

> Linear epitope prediction methods:

- Machine learning algorithms
 - Positive and negative training datasets are used
 - Combination of one or more amino acid scales are used as an input to one of the machine learning algorithms

20

WWW IEDB ORG

- Random Forest (**BepiPred-2.0**)
- ANN: Artificial Neural Network (ABCpred)
- SVM: Support Vector Machine (BCpred, FBCpred)
- Prediction accuracy is optimized

B cell epitope prediction tools

IEDB Analysis Resource

B Cell Tools Analysis Tools Tools-API Download Datasets Contribute Tools References	Cell Tools B Cell Tools Analysis Tools	view T	Tools-API
---	--	--------	-----------

B Cell Epitope Prediction Tools

B Cell Epitope Prediction

Prediction of linear epitopes from protein sequence

A collection of methods to predict linear B cell epitopes based on sequence characteristics of the antigen using amino acid scales and HMMs.

Discotope - Prediction of epitopes from protein structure

This method incorporates solvent-accessible surface area calculations, as well as contact distances into its prediction of B cell epitope potential along the length of a protein sequence.

ElliPro - Epitope prediction based upon structural protrusion

This method predicts epitopes based upon solvent-accessibility and flexibility.

Methods for modeling and docking of antibody and protein 3D structures

This page provides information on available methods for modeling and docking of antibody and protein 3D structures.

Structure Tools

LYRA (Lymphocyte Receptor Automated Modelling):

The LYRA server predicts structures for either T-Cell Receptors (TCR) or B-Cell Receptors (BCR) using homology modelling. Framework templates are selected based on BLOSUM score, and complementary determining regions (CDR) are then selected if needed based on a canonical structure model and grafted onto the framework templates.

Tools under AR Labs which are experimental and are not quite ready for production yet. They are intended for further research, updates and testing.

Linear epitope prediction

Home Help Example Reference Download Contact

Antibody Epitope Prediction

MMUNE EPITOPE DATABASE

AND ANALYSIS RESOURCE

- BepiPred is the default and recommended method.
- It is based on a combination of Hidden Markov model (HMM) and two amino acid scales.
- Parker's hydrophilicity scale and Levitt's secondary structure scale.
- Reported AUC was 0.66.(Larsen et al., 2006)

Bepipred Linear Epitope Prediction Results

Input Sequences

```
1 VLSEGEWQLV LHVWAKVEAD VAGHGQDILI RLFKSHPETL EKFDRFKHLK TEAEMKASED
```

- 61 LKKHGVTVLT ALGAILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISEA IIHVLHSRHP
- 121 GNFGADAGGA MNKALELFRK DIAAKYKELG YQG

No. 🗢	Start 🗢	End 🜩	Peptide 🗢	Length 🗭
1	2	2	L	1
2	19	24	ADVAGH	6
3	37	41	PETLE	5
4	54	62	EMKASEDLK	9
5	80	84	GHHEA	5
6	87	87	к	1
7	89	89	L	1
-				

IMMUNE EPITOPE DATABASE

AND ANALYSIS RESOURCE

0.35 0.49 0.75 0.90 0.25 0.91 1.30 0.13 0.96

23 www.IEDB.org

Bepipred Linear Epitope Prediction Results

Input Sequences

- 1 VLSEGEWQLV LHVWAKVEAD VAGHGQDILI RLFKSHPETL EKFDRFKHLK TEAEMKASED
- 61 LKKHGVTVLT ALGAILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISEA IIHVLHSRHP
- 121 GNFGADAGGA MNKALELFRK DIAAKYKELG YQG

No. 🜩	Start 🜩	End 🜩	Peptide 🗢	Length 🗢
1	2	2	L	1
2	19	24	ADVAGH	6
3	37	41	PETLE	5
4	54	62	EMKASEDLK	9
5	80	84	GHHEA	5
6	87	87	к	1
7	89	89	L	1
8	91	96	QSHATK	6
9	119	131	HPGNFGADAGGAM	13
10	149	152	LGYQ	4

Predicted peptides:

Predicted residue scores:

Position 🗢	Residue 🖨	Score 🗢	Assignment 🖨
1	v	0.121	
2	L	0.476	E
3	S	0.168	-
4	E	0.198	•
5	G	-0.180	•
6	E	-0.255	20
7	W	-0.412	•
8	Q	-0.631	•
9	L	-1.022	-5
10	v	-1.482	
11	L	-1.784	•
12	н	-1.496	-

Sequence-based epitope prediction

146	Y	-0.035	122
147	К	0.098	
148	E	0.265	•
149	L	0.433	E
150	G	0.357	Е
151	Y	0.442	E
152	Q	0.436	E
153	G	0.292	÷.

Download result 💌

Chou & Fasman Beta-Turn Prediction

Input Sequences

- 1 VLSEGEWQLV LHVWAKVEAD VAGHGQDILI RLFKSHPETL EKFDRFKHLK TEAEMKASED
- 61 LKKHGVTVLT ALGAILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISEA IIHVLHSRHP
- 121 GNFGADAGGA MNKALELFRK DIAAKYKELG YQG

Predicted residue scores:

IMMUNE EPITOPE DATABASE

AND ANALYSIS RESOURCE

Position 🌻	Residue ≑	Start 🜩	End 🗢	Peptide ≑	Score 🖨
4	E	1	7	VLSEGEW	0.931
5	G	2	8	LSEGEWQ	<mark>1.</mark> 0
6	E	3	9	SEGEWQL	1.0

Average score of a protein is chosen as a threshold by default.

Karplus & Schulz Flexibility Prediction Prediction

Input Sequences

1 VLSEGEWQLV LHVWAKVEAD VAGHGQDILI RLFKSHPETL EKFDRFKHLK TEAEMKASED

61 LKKHGVTVLT ALGAILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISEA IIHVLHSRHP

121 GNFGADAGGA MNKALELFRK DIAAKYKELG YQG

Average: 0.988 Minimum: 0.901 Maximum: 1.059

Predicted residue scores:

Position 🜩	Residue 🖨	Start 🗢	End 🔷	Peptide 🗢	Score 🜩
4	E	1	7	VLSEGEW	1.053
5	G	2	8	LSEGEWQ	1.047
6	E	3	9	SEGEWQL	1.02

28 WWW.IEDB.ORG

Chou & Fasman Beta-Turn Prediction

Input Sequences

- 1 VLSEGEWQLV LHVWAKVEAD VAGHGQDILI RLFKSHPETL EKFDRFKHLK TEAEMKASED
- 61 LKKHGVTVLT ALGAILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISEA IIHVLHSRHP
- 121 GNFGADAGGA MNKALELFRK DIAAKYKELG YQG

Karplus & Schulz Flexibility Prediction

Input Sequences

1 VLSEGEWQLV LHVWAKVEAD VAGHGQDILI RLFKSHPETL EKFDRFKHLK TEAEMKASED 61 LKKHGVTVLT ALGAILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISEA IIHVLHSRHP 121 GNFGADAGGA MNKALELFRK DIAAKYKELG YQG

Bepipred Linear Epitope Prediction

Input Sequences

- 1 VLSEGEWQLV LHVWAKVEAD VAGHGQDILI RLFKSHPETL EKFDRFKHLK TEAEMKASED 61 LKKHGVTVLT ALGAILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISEA IIHVLHSRHP
- 121 GNFGADAGGA MNKALELFRK DIAAKYKELG YOG

It is better to use consensus of different methods rather than relying on a single method.

IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE

Sequence-based epitope prediction

- Evaluation of amino acid scales (Greenbaum et al., 2007):
 No method gave AUC above 0.60.
- Poor performance might be explained by the benchmark datasets containing long 15-25 aa peptides which along with epitope residues contain non-epitope residues.

15-mer AVVLYHNSACCPKWA

Outline

- B cell epitopes: Discontinuous And linear epitopes
- **Schema** of B cell epitope prediction tools on IEDB
- Sequence-based epitope prediction methods:
 - Linear epitope prediction methods
 - Amino acid physicochemical property-based methods
 - Machine learning approaches
- > 3D Structure-based epitope prediction methods:
 - Discontinuous epitope prediction methods
- Computational antibody design
 - Antigen and Antibody structure modelling
 - Antibody-protein docking

3D Structures of Ab-Ag complexes

Methods for 3D structure determination:

- X-ray crystallography (This method provides the most accurate identification of epitopes)
- Nuclear magnetic resonance (NMR)
- Electron microscopy (EM)
- Where to get 3D Ab-Ag complexes??

IEDB 3D export (1791 3D BCR assays)

Where to get 3D coordinates of proteins?

Biomolecular 3D structural data is deposited into PDB (Protein Data Bank)

www.rcsb.org PDB: Protein DataBank

A Structural View of Biology

This resource is powered by the Protein Data Bank archive-information about the 3D shapes of proteins, nucleic acids, and complex assemblies that helps students and researchers understand all aspects of biomedicine and agriculture, from protein synthesis to health and disease.

As a member of the wwPDB, the RCSB PDB curates and annotates PDB data.

The RCSB PDB builds upon the data by creating tools and resources for research and education in molecular biology, structural biology, computational biology, and beyond.

2017 RCSB PDB User Survey

October Molecule of the Month

Welcome

Deposit

Q Search

Visualize

Analyze

C Learn

ŝ

Download

33 www.IEDB.org

Search in PDB

IMMUNE EPITOPE DATABASE

AND ANALYSIS RESOURCE

Explore the PDB Archive

Search in PDB

Search in PDB

Advanced Search Inte	erface		
Sequence (BLAS	T/FASTA/PSI-BLAST) · · ·		
Sequence search (BL	AST or FASTA)		
Structure Id			Result Count
Chain Id			
Sequence			
Search Tool	BLAST ~		
Mask Low Complexity	Yes ~		
E-Value Cutoff	10.0		
Sequence	0		
Identity Cutoff			
(70, integer only)			
-			
		Add	Search Criteria 😈
Retrieve only repr	esentatives at 90% × sequence identity 🕢		
Match all v of the a	bove conditions.	Clear All Parameters	Submit Query

Downloading a PDB file

IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE

Protein Chains

SB PDB	Deposit 🗸	Search -	Visualize 👻	Analyze 👻	Download 🗸	Learn -	More -		MyPDB Logi
	a .	_	_	_	_				
Macromole	ecules								
Classificatio	on: <u>UNKNOV</u>	/N FUNCTIO	<u>NC</u>					Seq	uence Display for 1Z
Fotal Struct	ure Weight:	76870.31 🖯							
Macromole	cule Entities	3						Toggle	Protein Feature Vie
Molecule				Cha	ains Leng	gth C	Drganism	Details	
apical mem	brane antiger	n 1 precurso	r	A, E	336	Ē	Plasmodium falciparum	Fragment: domain I & domain	11
								Gene Name(s): PF11_0344	
Protein Fea	ature View -	UniProtKB A	C: Q7KQK5	UniProt				Find similar proteins by: Se	quence Structur
					Q 🔵		Q		
	07	OK5 - 07KOK5 F	AE7 - Anical mam	brane antigen 1					
Molec. Pro	cessing sign	chain	CAP 7 - Apicar men	orane antigen 1					
Secstruc									eical
PDB Valida	tion		e.	1.11	. Landa	111			
1240.A			\$		2				
٢									
					Full Pr	otein Featur	e View for Q7KQK5		
						otom r catur			

What if the 3D structure of a protein of your interest is not available in PDB?

Homology or comparative modeling methods, servers and databases

Discontinuous epitope prediction

- Structure-based epitope prediction using:
 - Geometrical properties combined with amino acid scales (DiscoTope, ElliPro, CEP)
 - Geometrical properties and amino acid scales used as input to machine learning approaches (EPSVR)
 - Protein-protein docking algorithms
- Sequence-based epitope prediction using
 - machine learning approaches (CBTope)

> DiscoTope:

- DiscoTope 1 Andersen *et al*, 2006, Protein Science
 DiscoTope 2 Kringelum *et al*, 2012, PLoS Comp. Biol.
- Trained on 75 X-ray structures of antibody-protein complexes (DiscoTope 2 took into account multiple epitopes in an antigen).
- Assigns each residue a score value calculated as a linear combination of normalized values from
 - Parker's hydrophilicity scale,
 - amino acid occurrence,
 - the number of contacts within 10Å, and
 - the area of relative solvent accessibility.
- AUC 0.71 for DiscoTope 1 and 0.73 for DiscoTope 2

IEDB Analysis Resource

B Cell Tools Analysis Tools Tools-API Download Datasets Contribute Tools References	Overview
---	----------

B Cell Epitope Prediction Tools

B Cell Epitope Prediction

Prediction of linear epitopes from protein sequence

A collection of methods to predict linear B cell epitopes based on sequence characteristics of the antigen using amino acid scales and HMMs.

Discotope - Prediction of epitopes from protein structure

This method incorporates solvent-accessible surface area calculations, as well as contact distances into its prediction of B cell epitope potential along the length of a protein sequence.

ElliPro - Epitope prediction based upon structural protrusion

This method predicts epitopes based upon solvent-accessibility and flexibility.

Methods for modeling and docking of antibody and protein 3D structures

This page provides information on available methods for modeling and docking of antibody and protein 3D structures.

Structure Tools

LYRA (Lymphocyte Receptor Automated Modelling):

The LYRA server predicts structures for either T-Cell Receptors (TCR) or B-Cell Receptors (BCR) using homology modelling. Framework templates are selected based on BLOSUM score, and complementary determining regions (CDR) are then selected if needed based on a canonical structure model and grafted onto the framework templates.

Tools under AR Labs which are experimental and are not quite ready for production yet. They are intended for further research, updates and testing.

DiscoTope

Home	Help	Example	Reference	Download	Contact
Home	neih	Example	Relefence	Dowilload	Contact

DiscoTope: Structure-based Antibody Prediction

Step 1: Please enter the 4-letter PDB id	(example: 1z40)		
Or upload a PDB file	Browse No file selected.		
Step 2: Please enter PDB chain id:	(example: A)		
Step 3: Select version ②	1.1 ~		
	Submit		

Please cite this reference when using DiscoTope.

DiscoTope

Home Help Example Referen	nce Download Contact
DiscoTope: Structu	re-based Antibody Prediction
Step 1: Please enter the 4-letter PDB ID Or upload a PDB file	1z40 example: 1z40) Choose File No file chosen
Step 2: Please enter PDB Chain ID	A
Step 3: Select version	2.0 •
	Submit Reset

DiscoTope Chart View

IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE

DiscoTope Table View

DiscoTope - Result

Chart View 2D View Cause Dradiation

DiscoTope 2.0 prediction for structure: 1z40 & Chain ID: A The positive predictions are displayed in green.

Chain ID 🔶	Residue ID 🖨	Residue Name 🛊	Contact Number 🜩	Propensity Score 💠	Discotope Score 🖨
A	108	ASN	17	-4.287	-5.749
A	109	PRO	7	-3.77	-4.141
A	110	TRP	23	-5.522	-7.532
A	111	THR	4	-5.226	-5.085
Α	112	GLU	2	-5.1	-4.744
A	113	TYR	20	-5.97	-7.584
А	114	MET	20	-9.295	-10.526
А	115	ALA	10	-7.532	-7.816
A	116	LYS	23	-11.888	-13.166
A	117	TYR	33	-11.038	-13.564
А	118	ASP	12	-9.15	-9.478
A	119	ILE	35	-10.419	-13.246
A	120	GLU	10	-6.657	-7.042
A	121	GLU	13	-5.019	-5.937
А	122	VAL	30	-8.676	-11.129
A	123	HIS	43	-10.161	-13.938
А	124	GLY	17	-4.876	-6.27
A	125	SER	25	-3.112	-5.629
A	126	GLY	33	-8.05	-10.92
A	127	ILE	39	-12.601	-15.637
А	128	ARG	27	-13.272	-14.85
A	129	VAL	25	-9.506	-11.288
А	130	ASP	39	-8.027	-11.589
Α	131	LEU	29	-5.732	-8.408
А	132	GLY	30	-3.241	-6.318
А	133	GLU	20	-0.565	-2.8
Α	134	ASP	19	3.255	0.695
Α	135	ALA	28	1.707	-1.709

JSmol-Rendered PDB Structure

Chart View Table View Save Prediction

Chain ID 🗘	Residue ID •	Residue Name •	Contact •	Propensity Score	Discotope Score	View 🗢
A	133	GLU	20	-0.565	-2.8	CPK
A	134	ASP	19	3.255	0.695	CPK
А	135	ALA	28	1.707	-1.709	CPK
A	136	GLU	9	3.871	2.391	CPK
A	137	VAL	26	2.342	-0.917	CPK
A	138	ALA	14	1.33	-0.433	СРК
А	139	GLY	6	2.141	1.204	CPK
A	140	THR	23	3.529	0.478	CPK
А	141	GLN	12	4.393	2.508	СРК
A	142	TYR	31	1.669	-2.088	CPK
A	162	ASN	1	-4.008	-3.662	CPK
A	187	GLU	0	-0.296	-0.262	CPK
А	188	PRO	10	0.275	-0.907	CPK
A	196	ASP	2	-0.359	-0.548	CPK
A	197	GLU	16	-0.325	-2.128	CPK
A	199	ARG	10	-0.233	-1.356	CPK
А	200	HIS	9	0.977	-0.171	CPK
A	201	PHE	23	1.105	-1.667	CPK
A	202	TYR	27	2.394	-0.986	CPK
A	203	LYS	4	2.272	1.551	CPK
A	204	ASP	1	2 544	2 136	CPK

JSmol-Rendered PDB Structure

Chart View Table View Save Prediction

Chain ID 🗢	Residue ID	Residue Name •	Contact Number 🛛 🖨	Propensity Score	Discotope Score	View ¢
А	133	GLU	20	-0.565	-2.8	CPK
A	134	ASP	<mark>1</mark> 9	3.255	0.695	CPK
А	135	ALA	28	1.707	-1.709	CPK
A	136	GLU	9	3.871	2.391	CPK
A	137	VAL	26	2.342	-0.917	CPK
A	138	ALA	14	1.33	-0.433	CPK
А	139	GLY	6	2.141	1.204	CPK
A	140	THR	23	3.529	0.478	CPK
А	141	GLN	12	4.393	2.508	CPK
A	142	TYR	31	1.669	-2.088	CPK
А	162	ASN	1	-4.008	-3.662	CPK
А	187	GLU	0	-0.296	-0.262	CPK
А	188	PRO	10	0.275	-0.907	CPK
A	196	ASP	2	-0.359	-0.548	CPK
A	197	GLU	16	-0.325	-2.128	CPK
A	199	ARG	10	-0.233	-1.356	CPK
А	200	HIS	9	0.977	-0.171	CPK
А	201	PHE	23	1.105	-1.667	CPK
А	202	TYR	27	2.394	-0.986	CPK
А	203	LYS	4	2.272	1.551	CPK
А	204	ASP	1	2.544	2.136	CPK

JSmol-Rendered PDB Structure

IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE

JSmol-Rendered PDB Structure

IEDB Analysis Resource

Overview	Cell Tools B Cell Tools	Analysis Tools Tools-API	Download Datasets	Contribute Tools	References
----------	-------------------------	--------------------------	-------------------	------------------	------------

B Cell Epitope Prediction Tools

B Cell Epitope Prediction

Prediction of linear epitopes from protein sequence

A collection of methods to predict linear B cell epitopes based on sequence characteristics of the antigen using amino acid scales and HMMs.

Discotope - Prediction of epitopes from protein structure

This method incorporates solvent-accessible surface area calculations, as well as contact distances into its prediction of B cell epitope potential along the length of a protein sequence.

ElliPro - Epitope prediction based upon structural protrusion

This method predicts epitopes based upon solvent-accessibility and flexibility.

Methods for modeling and docking of antibody and protein 3D structures

This page provides information on available methods for modeling and docking of antibody and protein 3D structures.

Structure Tools

LYRA (Lymphocyte Receptor Automated Modelling):

The LYRA server predicts structures for either T-Cell Receptors (TCR) or B-Cell Receptors (BCR) using homology modelling. Framework templates are selected based on BLOSUM score, and complementary determining regions (CDR) are then selected if needed based on a canonical structure model and grafted onto the framework templates.

Tools under AR Labs which are experimental and are not quite ready for production yet. They are intended for further research, updates and testing.

ElliPro

IEDB Analysis Resource

ElliPro: Antibody Epitope Prediction

Reference

Download

Contact

Specify Sequence(s)							
	5LYM						
	Choose File No file chosen						
Select Epitop	e Prediction Parameters						
Minimum score:	0.5 ▼ (Default is 0.5)						
Maximum distance (Angstrom):	6 ▼ (Default is 6)						
	Submit Reset						

• Implements three algorithms:

- approximation of the protein shape as an ellipsoid
- calculation of the residue protrusion index (PI)
- clustering of neighboring residues based on PI values

Ponomarenko *et al*, BMC Bioinformatics 2008. Thornton *et al*, EMBO J. 1986.

Help

Home

Example

ElliPro Input

IEDB Analysis Resource Home Help Example Reference Download Contact

ElliPro: Antibody Epitope Prediction

Select PDB chain(s) for calculation

Input pdb id: 5LYM

Number of chain(s) found: 2

Select	No.	Chain	Chain type	Number of residues	
	1	Α	Amino acid	129	
	2	В	Amino acid	129	N
Subm	it F	Reset			

Home Help Example Reference Download Contact

Input Sequences: 5LYM

Chain: A

1 KVFGRCELAA AMKRHGLDNY RGYSLGNWVC AAKFESNFNT QATNRNTDGS TDYGILQINS

61 RWWCNDGRTP GSRNLCNIPC SALLSSDITA SVNCAKKIVS DGNGMNAWVA WRNRCKGTDV

121 QAWIRGCRL

Predicted Linear Epitope(s):

No. 🗢	Chain 🗢	Start ¢	End 💠	Peptide 🗢	Number of residues 🜩	Score 🗢	3D structure 🗢	
1	А	45	50	RNTDGS	6	0.78	View	
2	А	112	129	RNRCKGTDVQAWIRGCRL	18	0.771	View	
3	А	100	103	SDGN	4	0.76	View	
4	А	64	81	CNDGRTPGSRNLCNIPCS	18	0.666	View	
5	А	1	7	KVFGRCE	7	0.597	View	Click to view 3D struc
6	А	13	23	KRHGLDNYRGY	11	0.574	View	in JSMol
7	А	85	88	SSDI	4	0.504	View	·
Pred	icted D	iscont	inuou	s Epitope(s):	1	,		
No. 🔶	Residues	;						♦ Number of residues
1	A:S100, A	.:D101, A:0	G102, A:N	103, A:N106				5 0.727

 2
 A:K1, A:V2, A:F3, A:G4, A:R5, A:C6, A:E7, A:F38, A:N39, A:T40, A:Q41, A:A42, A:S85, A:S86, A:D87, A:I88, A:R112, A:N113, A:R114, A:C115, A:G117, A:Q121, A:A122, A:I124, A:R125, A:G126, A:C127, A:R128, A:L129
 32
 0.657
 View

 3
 A:R45, A:N46, A:T47, A:D48, A:G49, A:S60, A:R61, A:W62, A:W63, A:C64, A:N65, A:D66, A:G67, A:R68, A:T69, A:P70, A:G71, A:S72, A:R73, 28
 0.648
 View

ElliPro: Epitope 3D Structures for 5LYM

No.	Residues	Number of residues	Score
1	A:S100, A:D101, A:G102, A:N103, A:N106	5	0.727

JSmol-Rendered PDB Structure

56

Predicted Linear Epitope(s):

No. 💠	Chain 🖨	Start 🗢	End 🜩	Peptide 🔶	Number of residues 🜲	Score 🗢	3D structure 🖨
1	А	45	50	RNTDGS	6	0.78	View
2	А	112	129	RNRCKGTDVQAWIRGCRL	18	0.771	View
3	А	100	103	SDGN	4	0.76	View
4	А	64	81	CNDGRTPGSRNLCNIPCS	18	0.666	View
5	А	1	7	KVFGRCE	7	0.597	View
6	А	13	23	KRHGLDNYRGY	11	0.574	View
7	А	85	88	SSDI	4	0.504	View

Predicted Discontinuous Epitope(s):

^{No.} ♦	Residues	Number of residues	Score 🖕	3D structure ≑
1	A:S100, A:D101, A:G102, A:N103, A:N106	5	0.727	View
2	A:K1, A:V2, A:F3, A:G4, A:R5, A:C6, A:E7, A:F38, A:N39, A:T40, A:Q41, A:A42, A:S85, A:S86, A:D87, A:I88, A:R112, A:N113, A:R114, A:C115, A:K116, A:G117, A:T118, A:D119, A:Q121, A:A122, A:I124, A:R125, A:G126, A:C127, A:R128, A:L129	32	0.657	View
3	A:R45, A:N46, A:T47, A:D48, A:G49, A:S50, A:N59, A:S60, A:R61, A:W62, A:W63, A:C64, A:N65, A:D66, A:G67, A:R68, A:T69, A:P70, A:G71, A:S72, A:R73, A:N74, A:L75, A:C76, A:N77, A:I78, A:P79, A:S81	28	0.648	View
4	A:A10, A:K13, A:R14, A:G16, A:L17, A:D18, A:N19, A:Y20, A:R21, A:G22, A:Y23, A:S24	12	0.564	View

Click here to view residue scores

© 2005-2017 | <u>IEDB Home</u> Supported by a contract from the National Institute of Allergy and Infectious Diseases, a component of the National Institutes of Health in the Department of Health and Human Services.

ElliPro: 2D Score Chart(s) for 5LYM

Data table

No. 🗢	Chain 🖨	Residue number 🌲	Residue name 🌲	Score 🜩
1	A	1	LYS	0.705
2	A	2	VAL	0.705
3	A	3	PHE	0.388
4	A	4	GLY	0.597
5	A	5	ARG	0.527
6	A	6	CYS	0.628
7	A	7	GLU	0.628
8	A	8	LEU	0.155
9	A	9	ALA	0.271

- •Use BepiPred and DiscoTope to predict B cell epitopes of dengue 2 virus envelope glycoprotein.
- Download crystal structure and sequence of dengue 2 virus envelope glycoprotein from PDB (PDB ID: <u>4UTC</u>).

Bepipred Linear Epitope Prediction Results

Input Sequences

1 MRCIGISNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KQPATLRKYC 61 IEAKLTNTTT ESRCPTQGEP SLNEEQDK RFICKHSMVD RGWGNGCGLF GKGGIVTCAK 121 FTCKKNMEGK IVQPENLEYT IVITPHSGEE HAVGNDTGKH GK EIKITP QSSTTEAELT 181 GYGTVTMECS PRTGLDFNEM VLLQMEDKAW LVHRQWFLDL PLPWLPGADT QGSNWIQKET 241 LVTF KNPH AKKQDVVVLG SQEGAMHTAL TGATEIQMSS GNLLFTGHLK CRLRMDKLQL 301 KGMSYSMCTG KFKIVKEIAE TQHGTI VI RVQYEGDGSP CKIPFEITDL EKRHVLGRLI 361 TVNPIVTEKD SPVNIEAEPP FGDSYIIVGV EPGQLKLNWL RPLESRGP FEGKPIPNPL 421 LGLDSTRTGH HH

Too many epitope candidates?

Average: 0.188 Minimum: -1.776 Maximum: 1.900

60

Bepipred Linear Epitope Prediction Results

Input Sequences

1 MRCIGISNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KQPATLRKYC 61 IEAKLTNTTT ESRCPTQGEP SLNEEQDK RFICKHSMVD RGWGNGCGLF GKGGIVTCAK 121 FTCKKNMEGK IVQPENLEYT IVITPHSGEE HAVGNDTGKH GK EIKITP QSSTTEAELT 181 GYGTVTMECS PRTGLDFNEM VLLQMEDKAW LVHRQWFLDL PLPWLPGADT QGSNWIQKET 241 LVTF KNPH AKKQDVVVLG SQEGAMHTAL TGATEIQMSS GNLLFTGHLK CRLRMDKLQL 301 KGMSYSMCTG KFKIVKEIAE TQHGTI VI RVQYEGDGSP CKIPFEITDL EKRHVLGRLI 361 TVNPIVTEKD SPVNIEAEPP FGDSYIIVGV EPGQLKLNWL RPLESRGP FEGKPIPNPL 421 LGLDSTRTGH HH

Score threshold of 0.9 corresponds to 90% specificity

Average: 0.188 Minimum: -1.776 Maximum: 1.900

DiscoTope: Structure based antibody prediction.

Did you notice the length difference between **BepiPred** (length **422**) and **DiscoTope** (length **391**) outputs?

62

Protein alignment	Nucleotide alignment	Web services	Help & Documentation
# # #=======================			
4UTC_A_seqres	1 MRCIGISNRDFVEGVSGGSWV	DIVLEHGSCVTTMAKNKP	ILDFELIKTEA 50
4UTC_A_atomse	1 MRCIGISNRDFVEGVSGGSWV		 LDFELIKTEA 50
4UTC_A_seqres	51 KQPATLRKYCIEAKLTNTTTE	SRCPTQGEPSLNEEQDKR	ICKHSMVDRG 100
4UTC_A_atomse	51 KQPATLRKYCIEAKLTNTTTE		 FICKHSMVDRG 100
4UTC_A_seqres 1	01 WGNGCGLFGKGGIVTCAKFTC	KKNMEGKIVQPENLEYTI	/ITPHSGEEHA 150
4UTC_A_atomse 1	.01 WGNGCGLFGKGGIVTCAKFTC		 /ITPHSGEEHA 150
4UTC_A_seqres 1	51 VGNDTGKHGKEIKITPQSSTT	EAELTGYGTVTMECSPRT	GLDFNEMVLLQ 200
4UTC_A_atomse 1	51 VGNDTGKHGKEIKITPQSSTT	EAELTGYGTVTMECSPRT	 DFNEMVLLQ 198
4UTC_A_seqres 2	01 MEDKAWLVHRQWFLDLPLPWL	PGADTQGSNWIQKETLVT	FKNPHAKKQDV 250
4UTC_A_atomse 1	99 MEDKAWLVHRQWFLDLPLPWL		 FKNPHAKKQDV 248
4UTC_A_seqres 2	51 VVLGSQEGAMHTALTGATEIQ	MSSGNLLFTGHLKCRLRM	OKLQLKGMSYS 300
4UTC_A_atomse 2	49 VVLGSQEGAMHTALTGATEIQ		 DKLQLKGMSYS 296
4UTC_A_seqres 3	01 MCTGKFKIVKEIAETQHGTIV	IRVQYEGDGSPCKIPFEI	TDLEKRHVLGR 350
4UTC_A_atomse 2	97 MCTGKFKIVKEIAETQHGTIV		 FDLEKRHVLGR 346
4UTC_A_seqres 3	51 LITVNPIVTEKDSPVNIEAEP	PFGDSYIIVGVEPGQLKL	WLRPLESRGP 400
4UTC_A_atomse 3	47 LITVNPIVTEKDSPVNIEAEP		 WLRPL 391
4UTC_A_seqres 4	01 FEGKPIPNPLLGLDSTRTGHH	H 422	
4UTC_A_atomse 3	92	- 391	

- There might be missing residues in PDB coordinate file compared to the sequence file provided by PDB.
- These missing residues are not resolved properly in the structure.
 - e.g. flexible loops

4UTC_A_BepiPred 1	MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTE <mark>A</mark>	50
4UTC_A_DiscoTope 1	MRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEA	50
4UTC_A_BepiPred 51	KQPATLRKYCIEAKLTN <mark>TTTESRCPTQGEPSLNEE</mark> QDKRFICKHSMVDRG	100
4UTC_A_DiscoTope_51	K <mark>Q</mark> PATLRKYCIEAKLTNTTTESRC <mark>PTQGEPSLN</mark> EEQDKRFICKHS <mark>MVDRG</mark>	100
4UTC_A_BepiPred_101	WGNGCGLFGKGGIVTCAKFTCKKNMEGKIVQPENLEYTIVITP <mark>HSGEEHA</mark>	150
4UTC_A_DiscoTope 101	WGNGCGLFGKGGIVTCAKFTCKKNMEGKIVQPENLEYTIVITPHSGEEHA	150
4UTC_A_BepiPred_151	VGNDTGKHGKEIKITPQSSTTEAELTGYGTVTMECSPRTGLDFNEMVLLQ	200
4UTC_A_DiscoTope 151	VGNDTGKHGKEIKITPQSSTTEAELTGYGTVTMECSPRTDFNEMVLLQ	198
4UTC_A_BepiPred_201	MEDKAWLVHRQWFLDLPLPWL <mark>PGADTQGS</mark> NWIQKETLVTFKNP <mark>HAK</mark> KQDV	250
4UTC_A_DiscoTope 199	MEDKAWLVHRQWFLDLPLPWLPG <mark>ADTQ</mark> GSNWIQKETLVTFKN <mark>PHAK</mark> KQDV	248
4UTC_A_BepiPred_251	VVLGSQEGAMHTALTGATEIQMSSGNLLFTGHLKCRLRMDKLQLKGMSYS	300
4UTC_A_DiscoTope 249	VVLGSQEGAMHTALTGATEIQMS <mark>S</mark> GNLLFHLKCRLRMDKLQLKGM <mark>SYS</mark>	296
4UTC_A_BepiPred_301	MCTGKFKIVKEIAETQHGTIVIRVQY <mark>EGDGSP</mark> CKIPFEITDLEKRHVLGR	350
4UTC_A_DiscoTope 297	MCTGKFKIVKEIAETQHGTIVIRVQYEG <mark>D</mark> GSPCKIPFEITDL <mark>E</mark> K <mark>RH</mark> VLGR	346
4UTC_A_BepiPred_351	LITVNPIV <mark>TEKD</mark> SPVNIEAEPPFGDSYIIVGVEPGQLKLNWLRPLES <mark>RGP</mark>	400
4UTC_A_DiscoTope 347	LITVNPIVT <mark>EKT</mark> SPVNIEAEPPFGDSYIIVGVE <mark>P</mark> GQLKLNWLR <mark>PL</mark>	391

4UTC_A_BepiPred_401 FEGKPIPNPLLGLDSTRTGHHH 422

PredictedCorrectly predicted

Epitope residues from 3D B cell assay 3319631 (PDB ID: 2R69) were mapped on Dengue envelope glycoprotein.

AND ANALYSIS RESOURCE

WWW IEDB ORG

http://www.ofranlab.org/PEASE

- Theoretically, the whole exposed surface of an antigen can be targeted by different antibodies.
- Therefore, antibody sequence based B cell epitope prediction method called PEASE was developed.
 - Users must provide antigen structure and antibody sequence.

Sela-Culang et al, Bioinformatics 2015.

WWW IEDB ORG

Benchmark on 42 X-ray structures of Ab-protein complexes (Ponomarenko & Bourne, 2008)

Average AUC values

- 0.73 ElliPro (Ponomarenko et al., 2008)
- 0.65 Epitopia (Rubinstein et al., 2008)
- 0.63 PEPITO
- (Sweredoski & Baldi, 2008)
- 0.60 DiscoTope 1 (Andersen et al, 2006)
- 0.59 DOT (1st model, bound Ab-protein docking)
- 0.58 PatchDock (1st model, bound Ab-protein docking)

Benchmark on 52 X-ray structures of Ab-protein complexes (Kringelum et al., 2012, *PLoS Comp. Biol.*)

Average AUC values

(* means p-value < 0.05 in comparison with DiscoTope 2)

- 0.73 DiscoTope 2 (Kringelum et al., 2012)
- 0.73 PEPITO (Sweredoski & Baldi, 2008)
- 0.73 Epitopia (Rubinstein et al., 2008)
- 0.72 SEPPA (Sun et al., 2009)
- 0.71 DiscoTope 1 (Andersen et al, 2006)
- 0.69* ElliPro
- 0.65* EPCES
- 0.59* EPSVR

- (Andersen et al, 2006) (Ponomarenko et al., 2008) (Liang et al., 2009)
- (Liang et al., 2000)
- (Liang et al., 2010)

- The reason for the relatively poor performance is in the quality of the benchmark datasets.
 - structural information on the entire "biological unit" is often not available
 - existence of well characterized epitopes from very few antigens

Outline

- B cell epitopes: Discontinuous And linear epitopes
- **Schema** of B cell epitope prediction tools on IEDB
- Sequence-based epitope prediction methods:
 - Linear epitope prediction methods
 - Amino acid physicochemical property-based methods
 - Machine learning approaches
- > 3D Structure-based epitope prediction methods:
 - Discontinuous epitope prediction methods
- Computational antibody design
 - Antigen and Antibody structure modelling
 - Antibody-protein docking

Computational antibody design

Kuroda D et al, PEDS 2012.

What if the 3D structure of a protein of your interest is not available in PDB?

- Protein structures are more conserved than protein sequences
- Homologous proteins have similar structures
- > Homology or comparative modeling:

method,

databases (PMP, ModBase) and

web-servers (I-TASSER, ROBETTA, HHPred).

Homology modeling algorithm

Protein Modeling Portal (www.proteinmodelportal.org)

PMP gives access to various models computed by comparative modeling methods provided by different partner sites, and provides access to various interactive services for model building, and quality assessment.

EDWGPCTEHGEHRIRTPRTPARVTGGVFLVDKNPHNTTESRLVVDFSQFSRGNTRVSW PKFAVPNLQSLTNLLSSNLSWLSLDVSAAFYHLPLHPAAMPHLLVGSSGLSRYVARLSS NSRIINNQHRTMQNLHNSCSRNLYVSLMLLYKTYGRKLHLYSHPIILGFRKIPMGVGLSP FLLAQFTSAICSVVRRAFPHCLAFSYMDDVVLGAKSVQHLESLYAAVTNFLLSLGIHLNP HKTKRWGYSLNFMGYVIGGWGTLPQEHIVQKIKMCFRKLPVNRPIDWKVCQRIVGLLG

O

Examples: [UniProt AC] [UniProt ID] [RefSeq] [PDBID] [Sequence] [Free Text]

Modeling Highlights (Show all)

A Structure of a Collagen VI VWA Domain Displays N and C Termini at Opposite Sides of the Protein

Becker AA. Structure (2014) 22(2), 199-208

WWW IEDB ORG

Haas et al, Database 2013

Search

I-TASSER

- One of the best server for protein structure prediction in recent community-wide CASP7 to CASP12 experiments.
- Ranked as the best for function prediction in CASP9.
- Relatively simple user interface and parameters to understand.

Homology modeling

- Models can have errors if target to template sequence identity < 30%
- If the antigen model quality is good then it can used for B cell epitope prediction using Discotope and ElliPro.

Rost 1999; Martí-Renom et al. 2000

81

www.IEDB.org

Computational antibody design

Kuroda D et al, PEDS 2012.

Antibody structure

www.IEDB.org

3D Structure-based epitope prediction

IEDB Analysis Resource

s Tools - API Download Datasets Contribute Tools Reference	B Cell Tools Analysis Tools Tools-API	T Cell Tools	Overview
--	---------------------------------------	--------------	----------

B Cell Epitope Prediction Tools

B Cell Epitope Prediction

Prediction of linear epitopes from protein sequence

A collection of methods to predict linear B cell epitopes based on sequence characteristics of the antigen using amino acid scales and HMMs.

Discotope - Prediction of epitopes from protein structure

This method incorporates solvent-accessible surface area calculations, as well as contact distances into its prediction of B cell epitope potential along the length of a protein sequence.

ElliPro - Epitope prediction based upon structural protrusion

This method predicts epitopes based upon solvent-accessibility and flexibility.

Methods for modeling and docking of antibody and protein 3D structures

This page provides information on available methods for modeling and docking of antibody and protein 3D structures.

Structure Tools

LYRA (Lymphocyte Receptor Automated Modelling):

The LYRA server predicts structures for either T-Cell Receptors (TCR) or B-Cell Receptors (BCR) using homology modelling. Framework templates are selected based on BLOSUM score, and complementary determining regions (CDR) are then selected if needed based on a canonical structure model and grafted onto the framework templates.

👛 : Tools under AR Labs which are experimental and are not quite ready for production yet. They are intended for further research, updates and testing.

LYRA: Lymphocyte Receptor Automated Modeling

IEDB Analysis Resource					
Home Result Help	Example Reference Download Contact				
Lymphocyte	Receptor Automated Modelling (LYRA)				
	Specify Chains				
First chain sequence:			ĥ		
Second chain sequence:			ħ		
Or select file containing cha	ains: ③ Choose File No file chosen				
Advanced options » Side Chain Modeling Metho	od: ⑦ HMMER + SCWRL ▼				
Blacklisted PDBs (optional): (?)				
		Submit	Reset		

- B- and T-cell receptor structure modeling
- Canonical structures (CS): The hypervariable CDR loops can only assume a limited number of conformations (Chothia & Lesk, JMB 1987).
- Canonical structures can usually be identified by specific sequence features

Klausen MS et al, NAR 2015.

LYRA: Lymphocyte Receptor Automated Modeling

Home Result Help	Example Reference Download Contact
Lymphocyte	Receptor Automated Modelling (LYRA)
	Specify Chains
First chain sequence:	
Second chain sequence:	
Or select file containing ch	nains: ⑦ Choose File No file chosen
Advanced options » Side Chain Modeling Meth Blacklisted PDBs (optiona	nod: ⁽²⁾ HMMER + SCWRL ▼ I): ⁽²⁾

- Templates are identified using BLOSUM62 scores
- Loop modeling: If the canonical structure of target and template loops do not match then the highest scoring identical canonical structure loops from other structures are selected.

Klausen MS et al, NAR 2015.

LYRA

IEDB Analysis Resource

Home Result Help Example Reference Download Contact

Lymphocyte Receptor Automated Modelling (LYRA)

	Specify Chains
First chain sequence:	DIQMTQSPASLSASVGATVTITCRTSENIDSYLAWYQQRQGKSPQLLVYAATNLADGVPSRFSGSGSGTQY SLKINSLQSEDVARYYCQHYSTTPWTFGGGTQLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPK DINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNE C
Second chain sequence:	EVQLQQSGPELVKPGASVKISCKASGYSFTGYYMNWVKQSPEKSLEWIGEMSPSTGRTTYNQNFKAKATLT VDQSSSTAYMQLKSLTSEDSAVYYCARSVPLTTLIEDWYFDVWGTGTTVTVSSAKTTPPSVYPLAPGSAAQ TNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVAHPAS STKVDKKIVPR
Or select file containing ch	nains: 🕐 Choose File No file chosen
Advanced options »	
	Submit Reset

LYRA

Lyra results

Contents [hide] 1.Input sequences 2.Summary of modelled BCR 3.Alignment 3.1 Heavy chain alignment 3.2 Kappa Light chain alignment 4.Structure 3D View

5 Download PDB file

Input Sequences

Name	Sequence
First chain sequence:	DVVMTQTPLSISVTLGQPASISCKSSQSVLDTFAIWVFQRPGQSPRKLIFLISKRDSGVPDRFTGS ASGTDFTLKISRVEVEDVGVYYCWQGTHFPHTVGGGTKLEIA
Second chain sequence:	GVQLVESGGGVVQPGRSIRLSCAASGFTFSTYAMHWVRQAPGRGLEWVAIISYDGSKKYYADS VKGRFTISRNNSKDTLFAQMNSVRAEDTAVYYCARASIAAARVLDDYWGRGTMVTVSS

Summary of modelled BCR

	Heavy chain			Kappa Light chain			
	Template	Template CS	Predicted CS 📀	Template	Template CS	Predicted CS 📀	
Framework	<u>1NL0</u>			1NLD			
Loop 1	<u>1NL0</u>	1	1	1QLR	6	6	
Loop 2	<u>1NL0</u>	4	4	1NLD	1	1	
Loop 3	<u>319G</u>	22	22	1NLD	1	1	
Packing	1NLD		-				

Alignment:

Heavy chain alignment:

LYRA

Structure 3D View

Download PDB model file:

Download

89

Computational antibody design

Kuroda D et al, PEDS 2012.

https://cluspro.bu.edu

• Consistently successful in CAPRI experiments (Critical Assessment of Protein Interactions)

Kozakov et al, Nature Protocols 2017; Brenke et al, Bioinformatics 2012.

	sign ou
[Dock
Note: all jobs by non logged in users v	vill be publicly accessible. Please create an
	i and needs to remain confidential
Server:	pu 🗧
Accepte	ed PDB Input:
20 standard amino acids and RNA (as re	ceptor only), ref: <u>RNA</u> Select Heparin Mode to
use nepa	ann as Ligand.
Receptor	Ligand
Choose File 🗅 moddb	
Use PDB ID	Upload PDB
Chains:	Chains: A
Whitespace separate desired chair	ns. Leave chains blank to use all chains.
≻Advan	ced Options
I agree to use ClusPro only	r for noncommercial purposes.
с ,	
	Dock
(

- Advanced Options
- Attraction and Repulsion
 - Structure Modification
- Multimer Docking (Beta Version)

Antibody Mode

Please set antibody as receptor and antigen as ligand.

It is additionally recommended to provide a receptor mask of the non-CDR regions.

V

- Use Antibody Mode
- Automatically Mask non-CDR regions

93

www.IEDB.org

- Others Mode
- Heparin Ligand
 - Saxs Profile

✓ I agree to use ClusPro only for noncommercial purposes.

View Models

Balanced | Electrostatic-favored | Hydrophobic-favored | VdW+Elec

Download Model Scores for this Coefficient

Coefficient Weights

See Kozakov et. al. in Papers for a description of these terms

 $E = 0.40E_{rep} + -0.40E_{att} + 600E_{elec} + 1.00E_{DARS}$

Cluster Scores

We strongly encourage you to read the FAQ related to these scores before using them.

Cluster	Members	Representative	Weighted Score	
0	224	Center	-847.9	
		Lowest Energy	-847.9	
1	96	Center	-676.8	
		Lowest Energy	-820.9	
2	91	Center	-690.0	
		Lowest Energy	-851.4	
3	59	Center	-657.2	
		Lowest Energy	-841.4	
4	55	Center	-675.3	
		Lowest Energy	-786.9	
5	51	Center	-841.2	
		Lowest Energy	-841.2	
6	50	Center	-647.8	
		Lowest Energy	-798.3	

- Number of cluster members are used to get the best docked models
- Weighted scores should not be used to get the best models.

SnugDock

http://rosie.rosettacommons.org/snug_dock

Welcome to ROSIE Rosetta Online Server that Includes Everyone							
Welcome Queue About ChangeLog Documentation Support Login Create an account							
	Rosetta SnugDock	Protocol					
[Submit SnugDock task]	Single States and Stat	[SnugDock Server Documentation]					
Please cite the following article 1. A. Sircar & J. J. Gray, "SnugDock: P homology models," PLoS Comput. E	Please cite the following article when referring to results from our ROSIE server: 1. A. Sircar & J. J. Gray, "SnugDock: Paratope structural optimization during antibody-antigen docking compensates for errors in antibody						
 Lyskov S., Gray J.J. "The RosettaDo (2008). <u>Online</u> 	ck server for local protein-protein docking" N	ucleic Acids Research 36 (Web Server Issue), W233-W238					
 Lyskov S, Chou FC, Conchúir SÓ, Der BS, Drew K, Kuroda D, Xu J, Weltzner BD, Renfrew PD, Sripakdeevong P, Borgo B, Havranek JJ, Kuhlman B, Kortemme T, Bonneau R, Gray JJ, Das R., "Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE)". PLoS One. 2013 May 22;8(5):e63906. doi: 10.1371/journal.pone.0063906. Print 2013. Link 							
Modeling tools	developed by <u>GrayLab</u> . The Rosie implementa	ation was developed by Sergey Lyskov.					
We welcome scientific and technical comments on our server. For support please contact us at <u>Rosetta Forums</u> with any comments, questions or concerns.							
ROSIE is web front-end for Rosetta softw	vare suite. Developed by Sergey Lyskov, <u>GrayLab a</u>	at JHU. Copyright © 2013 Rosetta Commons Member Institutions.					

- Uses RosettaDock
- Simultaneously optimizes
 - antibody-antigen position,
 - CDR loops conformation and
 - heavy and light chain relative position
- Drawback: Requires one or more days to complete job
- Assessment: Weitzner *et al*, Nature Protocols 2017.

SnugDock

Welcome to ROSIE Rosetta Online Server that Includes Everyone
Welcome Queue About ChangeLog Documentation Support Login Create an account
Submit a new SnugDock job Job short description (visible in queue):
Input PDB Choose File No file chosen Docking partners list of chains separated by underscore: LH_A
SnugDock protocol to use: thorough_snug_dock v
Job Description (for your own records):
Submit You have not logged in! If you already have a ROSIE account, please login to submit your job. Alternatively, you also can submit a job as Guest: Keep my job-data public (Note that Public Jobs have higher priority and longer life time!) If you decide to keep your job private and submit it as Guest, your ROSIE Job will be allocated an obscure URL (anybody with a link will be able to access the results). For better security please consider to <u>Create a ROSIE Account</u> and use it to submit private jobs. [optional] Notify me when my job completes by sending a mail to:my@mail.com Submit ROSIE Job as Guest

SnugDock

SnugDock Job 2b1aclean 「№35368」 Details

Inputs

Status

Job ID	35368
Job Name	2b1aclean
Visibility	PUBLIC
Protocol	SnugDock
CPU hours used	75.2
user	jessye
Status	Finished
Description	
docking_partners	LH_P
protocol	thorough_snug_dock
Submitted time	2017-09-22 07:29
Start time	2017-09-22 08:22
End time	2017-09-22 18:21
Daemon	GrayLab.Jazz

Results

 Ten lowest-interface-energy structures created in the docking run:

 Model-1
 Model-2
 Model-3
 Model-4
 Model-5

 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:

 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:

 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:

 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:

 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:

 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:

 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image: Structures created in the docking run:
 Image:

https://bioinfo3d.cs.tau.ac.il/PatchDock/

100

www.IEDB.org

Molecular Docking Algorithm Based on Shape Complementarity Principles

[About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

Receptor		Ligand	Complex Type	e Clustering RMSD	User e-mail	Receptor Site	Ligand Site	Distance Constraints
model pigs de	4241_dir.pdb	1n26A	AA	4.0	jpon@sdsc.edu	CDR	-	-
Solution No	Score	Area	ACE	Transformation			PDB file of	the complex
1	13410	1900.90	202.79	-1.94 -1.08 2.05 24.7	73 107.88 63.00		result.1.pdb	
2	12948	1731.60	-240.76	1.29 0.87 2.10 -10.4	8 70.22 38.19		result.2.pdb	
3	12770	1655.80	-192.09	0.33 1.24 -2.98 -15.4	46 65.89 49.76		result.3.pdb	
ļ.	11584	1251.70	-26.96	-2.35 0.82 2.55 41.5	0 17.24 126.21		result.4.pdb	
;	11570	1609.00	28.24	2.21 0.04 -1.09 76.2	6 77.02 40.59		result.5.pdb	
	11348	1407.10	-190.78	-1.57 0.12 -3.13 19.2	21 88.61 101.82		result.6.pdb	
	11300	1878.80	-225.56	2.48 -1.14 -0.04 49.2	28 97.02 55.91		result.7.pdb	
	11154	1813.50	-150.37	1.27 0.53 2.01 -10.1	6 68.70 31.29		result.8.pdb	
	10972	1479.60	47.91	1.17 0.53 2.07 -9.12	72.92 27.93		result.9.pdb	
0	10872	1631.70	-316.73	-2.72 0.73 -1.53 27.1	15 81.70 102.14		result.10.pd	2
1	10852	1512.40	-37.31	-1.25 -0.95 2.79 11.5	50 79.14 115.20		result.11.pd	2
2	10848	1336.90	-95.71	-1.41 -0.56 2.68 14.5	57 79.48 123.92		result.12.pd	2
3	10780	1503.70	-119.41	1.15 1.05 2.53 -14.9	6 65.76 41.33		result.13.pd	2
4	10698	1717.60	13.31	3.09 1.53 1.37 -29.8	4 23.86 101.92		result.14.pd	2
5	10696	1584.70	-180.44	0.64 1.01 2.79 -13.0	4 74.70 40.65		result.15.pd	2
6	10680	1377.50	-140.37	-1.02 0.61 -1.48 0.49	9 60.66 55.36		result.16.pd	2
7	10652	1590.40	-200.87	-1.32 1.12 -0.49 -24	09 20.10 109.61		result.17.pd	2
8	10646	1502.70	-79.45	0.29 -0.81 -0.18 13.6	55 40.36 3.49		result.18.pd	2
9	10600	1702.10	-319.87	-0.13 1.09 -2.08 -14	18 54.69 49.89		result.19.pd	2
0	10484	1641.80	-65.84	-0.19 -0.33 2.38 46.0	01 63.28 81.06		result.20.pd	2
							show next 2	0 »»
EW: Jmol view								
DOWNLOAD b	est solutions	as a ZIP f	ile: 10 (solu	tions number, from 2	to 100) GO (th	is takes few sec	conds, please	wait patiently)
OWNLOAD	solutions table	<u>transfo</u>	rmations file					
REFINE best s	olutions with	FireDock	10 (solution	ons number, from 1 t	o 1000) GO			

This option is recommended for protein-protein docking only!

= ?

101

www.IEDB.org

Molecular Docking Algorithm Based on Shape Complementarity Principles

[About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

ReceptorLigandmodel pigs de4241 dir.pdb1n264			Ligand 1n26A	Complex Type AA	Clustering RMSD 4.0	User e-mail jpon@sdsc.edu	Receptor Site CDR	Ligand Site -	Distance Constraints -
Solution Score Area		ACE	PDB file of the show/hide complex		show all/hide all				
1	13410	1900.90	202.79	result.1.pdb	\checkmark				
2	12948	1731.60	-240.76	result.2.pdb					
3	12770	1655.80	-192.09	result.3.pdb					
4	11584	1251.70	-26.96	<u>result.4.pdb</u>					
5	11570	1609.00	28.24	<u>result.5.pdb</u>					
6	11348	1407.10	-190.78	<u>result.6.pdb</u>					
7	11300	1878.80	-225.56	<u>result.7.pdb</u>					
8	11154	1813.50	-150.37	<u>result.8.pdb</u>		27		, ~	>
9	10972	1479.60	47.91	<u>result.9.pdb</u>			White of	PL CIDE)
10	10872	1631.70	-316.73	result.10.pdb				FOG RAS	
11	10852	1512.40	-37.31	result.11.pdb			1. K - 05	at de	
12	10848	1336.90	-95.71	result.12.pdb			2127	B OT	
13	10780	1503.70	-119.41	result.13.pdb				ชิ ่ ไ	
14	10698	1717.60	13.31	result.14.pdb					
15	10696	1584.70	-180.44	result.15.pdb					
16	10680	1377.50	-140.37	result.16.pdb					
17	10652	1590.40	-200.87	result.17.pdb				7	
18	10646	1502.70	-79.45	result.18.pdb					
19	10600	1702.10	-319.87	result.19.pdb	_				
20	10484	1641.80	-65.84	result.20.pdb					
				<u>sh</u>	ow next 20 »»				Jmol
DOW	NLOAD be	st solutions	as a ZIP (file: 10 (soluti	ons number, from	2 to 100) GO (t	his takes few se	conds, please	e wait patiently)
DOW	NLOAD SO	lutions table	transfo	ormations file					
DEET	NE hest sol	lutions with	FireDock	· 10 (solution	ns number, from 1	to 1000)			

102

www.IEDB.org

Molecular Docking Algorithm Based on Shape Complementarity Principles

[About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

Receptor model pigs de4241 dir.pdb		Ligand 1n26A	Complex Type AA	Clustering RMSD 4.0	User e-mail jpon@sdsc.edu	Receptor Site CDR	Ligand Site	Distance Constraints	
Solutio No	ⁿ Score	Area	ACE	PDB file of the complex	heshow/hide		show all/h	ide all	
1	13410	1900.90	202.79	result.1.pdb	~	\sim	A SAXAY	N PILLA	
2	12948	1731.60	-240.76	result.2.pdb	✓	0	CARA ()	DX ar	
3	12770	1655.80	-192.09	result.3.pdb	~	27	A XXX	ANG	
4	11584	1251.70	-26.96	result.4.pdb		1 m Lan	ZAXX /	RA AD	
5	11570	1609.00	28.24	result.5.pdb			KARA	MA AS	
6	11348	1407.10	-190.78	result.6.pdb			AN ISC	COVE	
7	11300	1878.80	-225.56	result.7.pdb		1100	No Port	281	
8	11154	1813.50	-150.37	result.8.pdb			white and	5.	
9	10972	1479.60	47.91	result.9.pdb			V	10-	
10	10872	1631.70	-316.73	result.10.pdb		CON	QM		
11	10852	1512.40	-37.31	result.11.pdb		QQ	The		
12	10848	1336.90	-95.71	result.12.pdb		RVA	The second	5 2	
13	10780	1503.70	-119.41	result.13.pdb		XXXX	KK) Y		
14	10698	1717.60	13.31	result.14.pdb		()SPS	ASP N	BLAR	0
15	10696	1584.70	-180.44	result.15.pdb		JKAR	and I'm	OP	XG
16	10680	1377.50	-140.37	result.16.pdb		105	1 pa	Y	
17	10652	1590.40	-200.87	result.17.pdb		484	U	6	
18	10646	1502.70	-79.45	result.18.pdb		20		14 2-	J. Ce
19	10600	1702.10	-319.87	result.19.pdb)			25
20	10484	1641.80	-65.84	result.20.pdb		/			
				sh	ow next 20 »»				mol
									M HEALT
DOWN	LOAD bes	st solutions	as a ZIP f	ile: 10 (soluti	ons number, from	2 to 100) GO (t	his takes few se	conds, please	wait patiently)

REFINE best solutions with FireDock: 10 (solutions number, from 1 to 1000) GO

Computational antibody design

103 www.IEDB.org

Thank you!

Questions?

104 www.IEDB.org