

The Immune Epitope Database Analysis Resource:

MHC class II peptide binding predictions

Sinu Paul spaul@lji.org

IEDB user workshop 2018 Oct 22-23, 2018

www.IEDB.org

Outline

- Introduction
- Class II binding prediction tool Web version
- IEDB recommendations & guidelines
- Prediction of promiscuous binders
- Exercise
- TepiTool New interface for binding predictions
- Other versions
 - API/RESTful interface
 - Standalone

Introduction

Exogenous antigen processing pathway (class II)

- Antigens generated outside the cell
 - Entered through inhalation,
 - ingestion, injection
 - Bacteria, Allergens,Parasites etc.

Nature Reviews Immunology 11, 823-836 (December 2011) | doi:10.1038/nri3084

Towards a systems understanding of MHC class I and MHC class II antigen presentation

Jacques Neefjes¹, Marlieke L. M. Jongsma¹, Petra Paul¹ & Oddmund Bakke²

MHC class II binding prediction tool

• Basic structure and principles same as class I binding prediction tool.

• Some differences.

MHC Class I & II molecules

Class I:

- Present in all nucleated cells
- One MHC encoded polymorphic chain (α) (2nd chain β_2 -microglobulin).
- Only one chain (α) impacts binding.
- Binding groove is closed.
- Can bind only shorter peptides (8-14 AA).
- Presents antigen to CD8⁺ T cells

Class II:

- Only in antigen presenting cells
- Two MHC encoded polymorphic chains (α , β).
- Both α and β chains impact binding.
- Binding groove is open.
- Can bind longer peptides (13-25 AA).

Figure source: Cellular & Molecular Immunology, 5th Ed by Abbas and Lichtman

HLA Nomenclature

- Class I:
 - Only α chain is variable
 - HLA-B*07:02
- Class II:
 - Both α and β chains are variable for DP & DQ loci
 - HLA-DPA1*01:03/DPB1*02:01
 - HLA-DQA1*01:01/DQB1*05:01
 - Only β chain is variable for DR locus
 - HLA-DRB1*01:01

Class II binding peptide "Binding core"

• 9 AA core within the peptide that interacts with the binding groove of MHC molecule.

- Challenge: Correct identification of the binding core.
- Needs proper alignment of the binding core with the binding groove.

"Peptide flanking residues" (PFR)

• Residues flanking the binding core - interacts with MHC molecule outside the groove.

• Challenge: PFR length & composition influence binding.

Other challenges of class II binding prediction

- Availability of uniform experimentally measured binding data which can be used for training the tools - less compared to class I.
- A minimum of 200 peptides with binding affinity data needed for description of binding motif in MHC class II alleles.
- Fewer alleles available for class II tools compared to class I.

Other differences between class I & II tools

- Peptide length = 15 (for the tool)
- Lesser accuracy compared to class-I tool

Cla	ss I	Class II				
Method	AUC*	Method	AUC*			
NetMHCpan	0.900 ¹	NetMHCIIpan	0.781 ²			
SMM	0.894 ³	SMM-align	0.763 ⁴			

* The AUCs reported here are from different studies and obtained from different data sets

- Higher threshold for selecting binders than class-I.
 - 1. Andreatta & Nielsen, 2016, Bioinformatics

11 WWW IEDB ORG

- 2. Jensen et al. 2018, Immunology
- 3. Kim et al. 2009, BMC Bioinformatics
- 4. Wang et al. 2010, BMC Bioinformatics

MHC class II binding prediction methods available

Methods	Prediction based on	Reference	Performance reported*
Consensus	Combination of SMM-align, NN-align & CombLib/Sturniolo	Wang et al., 2008	0.783 AUC
NetMHCIIpan-3.1	Artificial Neural Network	Andreatta et al., 2015	0.870 AUC
NN_align-2.2	Artificial Neural Network	Nielsen & Lund, 2009	0.782 AUC
SMM_align-1.1	Stabilization Matrix Alignment	Nielsen et al., 2007	0.763 AUC
Combinatorial Library	Position scanning combinatorial libraries	Sidney et al., 2008	0.691 AUC
Sturniolo	Scoring matrix based	Sturniolo et al., 1999	

* All AUCs are averaged across several MHC molecules and obtained from Wang (2010) BMC Bioinformatics

(Table-4) with similarity reduced data set, except NetMHCIIpan-3.1 (from Andreatta et al., 2015).

Class II tool – Web version

http://tools.iedb.org/mhcii

Web interface - http://tools.iedb.org/mhcii

]	Home Help Example Reference Down	load Contact								
L	MHC-II Binding Prediction	IS IS								
	Specify Sequence(s)									
\rightarrow	Enter protein sequence(s) in FASTA format (Browse for sequences in NCBI)									
	Or select file containing sequence(s) Choose File No file chosen									
	Choose sequence format									
		Choose a Prediction Method								
\rightarrow	Prediction Method IEDB recommended Help on prediction method selections									
	Specify what to make binding predictions for									
\rightarrow	Select species/locus	Human, HLA-DR 🔻								
\rightarrow	Select MHC allele(s) Select α & β chains separately if applicable: ? Select full HLA reference set: ? Select 7-allele HLA reference set: ?	Allele Upload allele file								
		Specify Output								
	Sort peptides by	Percentile Rank								
	Output format	XHTML table •								
IMMUNE EPITOPE DAT	Email address (optional)	(?)								

14 **3**.ORG

Guidelines: Choosing the method

MHC-II Binding Predictions

	Specify Sequence(s)					
Enter protein sequence(s) in FASTA format (Browse for sequences in NCBI)	West Nile virus envelope glycoprotein NCLGMSNRDFLEGVSGATWVDLVLEGDSCVTIMSKDKPTIDVKMMNMEAANLAEVRSYCYLATVSDLST AACPTMGEAHNDKRADPAFVCRQGVVDRGWGNGCGLFGKGSIDTCAKFACSTKAIGRTILKENIKYEVA FVHGPTTVESHGNYSTQVGATQAGRFSITPAAPSYTLKLGEYGEVTVDCEPRSGIDTNAYYVMTVGTKT LVHREWFMDLNLPWSSAGSTVWRNRETLMEFEEPHATKQSVIALGSQEGALHQALAGAIPVEFSSNTVK TSGHLKCRVKMEKLQLKGTTYGVCSKAFKFLGTPADTGHGTVVLELQYTGTDGPCKVPISSVASLNDLT VGRLVTVNPFVSVATANAKVLIELEPPFGDSYIVVGRGEQQINHHWHKSGSSIGKAFTTTLKGAQRLAA GDTAWDFGSVGGVFTSVGKAVHQVFGGAFRSLFGGMSWITQGLLGALLLWMGINARDRSIALTFLAVGG LLFLSVNVHA					
Or select file containing sequence(s)	Choose File No file chosen					
Choose sequence format	auto detect format					
	Choose a Prediction Method					
Prediction Method Select species/locus Select MHC allele(s) Select α & β chains separately if applicable: ? Select full HLA reference set: ? Select 7-allele HLA reference set: ?	IEDB recommended + elp on prediction method selections IEDB recommended + elp on prediction method selections S Consensus n predictions for NetMHCIIpan n predictions for NN-align SMM-align elp on prediction method selections Combinatorial library sturniolo elp on predictions for					
	Specify Output					
Sort peptides by	Percentile Rank					
Output format	XHTML table •					
Email address (optional)	(?)					
	Submit Reset					

MMUNE

Guidelines: Choosing the method

- Method to use: <u>IEDB recommended method</u> employs Consensus (Combination of NN-align, SMMalign & CombLib/Sturniolo) or NetMHCIIpan depending on the allele.
- Advantages:
 - Best available methods.
 - Gives a consensus percentile rank.
 - Gives binding affinity & percentile rank for each method separately as well.

Allele selection

MHC-II Binding Predictions

	Specify Sequence(s)									
Enter protein sequence(s) in FASTA format (Browse for sequences in NCBI)	>West Nile virus envelope glycoprotein FNCLGMSNRDFLEGVSGATWVDLVLEGDSCVTIMSKDKPTIDVKMMNMEAANLAEVRSYCYLATVSDLST KAACPTMGEAHNDKRADPAFVCRQGVVDRGWGNGCGLFGKGSIDTCAKFACSTKAIGRTILKENIKYEVA IFVHGPTTVESHGNYSTQVGATQAGRFSITPAAPSYTLKLGEYGEVTVDCEPRSGIDTNAYYVMTVGTKT FLVHREWFMDLNLPWSSAGSTVWRNRETLMEFEEPHATKQSVIALGSQEGALHQALAGAIPVEFSSNTVK LTSGHLKCRVKMEKLQLKGTTYGVCSKAFKFLGTPADTGHGTVVLELQYTGTDGPCKVPISSVASLNDLT PVGRLVTVNPFVSVATANAKVLIELEPPFGDSYIVVGRGEQQINHHWHKSGSSIGKAFTTTLKGAQRLAA LGDTAWDFGSVGGVFTSVGKAVHQVFGGAFRSLFGGMSWITQGLLGALLLWMGINARDRSIALTFLAVGG VLLFLSVNVHA									
Or select file containing sequence(s)	Choose File No file chosen									
Choose sequence format	auto detect format									
	Choose a Prediction Method									
Prediction Method	IEDB recommended Help on prediction method selections									
	Specify what to make binding predictions for									
Select species/locus	Human, HLA-DP 🔻									
Select MHC allele(s) Select $\alpha \& \beta$ chains separately if applicable: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Allele									
Select full HLA reference set: ? Select 7-allele HLA reference set: ?	Upload allele file 💿									
	DPA1*01/DPB1*04:01									
Sort peptides by	DPA1*01:03/DPB1*01:01 DPA1*01:03/DPB1*02:01 DPA1*01:03/DPB1*02:02									
Output format	DPA1*01:03/DPB1*03:01 DPA1*01:03/DPB1*04:01									
Email address (optional)	DPA1*01:03/DPB1*04:02 DPA1*01:03/DPB1*05:01 DPA1*01:02/DPB1*06:01									
	DPA1*01:03/DPB1*06:01									

Allele selection - α and β chains separately

MHC-II Binding Predictions

IM

AN

	Specify Sequence(s)							
Enter protein sequence(s) in FASTA format (Browse for sequences in NCB) PVGRLVTVNPFVSVATANAKVLIELEPPFGDSYIVVGRGEQQINHHWHKSGSSIGKAFTTLKGAQRL LGDTAWDFGSVGGVFTSVGKAVHQVFGGAFRSLFGGMSWITQGLLGALLLWMGINARDRSIALTFLAV VLLFLSVNVHA								
Or select file containing sequence(s)	Choose File No file chosen							
Choose sequence format	auto detect format							
	Choose a Prediction Method							
Prediction Method	IEDB recommended Help on prediction method selections							
	Specify what to make binding predictions for							
Select species/locus	Human, HLA-DQ ▼							
Select MHC allele(s) Select α & β chains separately if applicable: <u>Select full HLA reference set</u> : Select 7-allele HLA reference set: ?	Allele DQA1*01:01 DQB1*02:01 Speci DQB1*02:02 DQB							
Sort peptides by	Percentile Rank DQB1*02:03 DQB1*02:04 DQB1*02:05 DQB1*02:05							
Email address (optional)	DQB1*03:01 DQB1*03:02 DQB1*03:03 DQB1*03:04 DQB1*03:05							

Allele selection – 27 allele reference set

Select "7-allele" reference set:

When the IEDB recommended option is selected, this box can be checked to select a reference panel of 7 alleles, as described in Paul et al. 2015.

Allele selection – 7 allele set

	Specify what to make binding predictions
Select species/locus	Human, HLA-DR 🔻
Select MHC allele(s) Select $\alpha \& \beta$ chains separately if applicable: <u>Select full HLA reference set</u> : Select 7-allele HLA reference set: \checkmark (?)	Allele HLA-DRB1*03:01 \bigstacker HLA-DRB1*07:01 \bigstacker HLA-DRB1*15:01 \bigstacker HLA-DRB3*01:01 \bigstacker HLA-DRB3*02:02 \bigstacker HLA-DRB4*01:01 \bigstacker HLA-DRB5*01:01 \bigstacker Upload allele file (?)

Additional information regarding HLA allele frequencies and nomenclature are also provided.

Select HLA allele reference set:

When the IEDB recommended option is selected, this box can be checked to select a reference panel of 27 alleles, as described here.

Select "7-allele" reference set:

IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE

When the IEDB recommended option is selected, this box can be checked to select a reference panel of 7 alleles, as described in Paul et al, 2015.

Allele selection – upload file

- Only available alleles
- No allele sequence

How the tool works

- 1. Breaks sequence into all possible **<u>15-mer peptides</u>**.
- 2. Predicts the binding affinity for each peptide based on the method.
- 3. Compares the predicted affinity to that of a large set of randomly selected peptides.
- 4. Assigns a percentile rank depending on individual predicted affinity.
- 5. Consensus picks median rank of the methods used consensus percentile rank

Percentile rank

- Generated by comparing the selected peptide's predicted binding affinity against that of a large set of peptides.
- Provides a uniform scale allowing comparisons across different predictors.
- A lower percentile rank indicates higher affinity.
- In case of consensus method, median of the percentile ranks of the three methods involved is consensus percentile rank.

Input

MHC-II Binding Predictions

	Specify Sequence(s)							
Enter protein sequence(s) in FASTA format <u>(Browse for sequences in NCBI</u>)	>HCV_NS3 APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPKGP VIQMYTNVDQDLVGWPAPQGSRSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSG GPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPVVPQSFQVAHLHAPTGSGK STKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGSPITYSTYGKFLADGGCS GGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATATPPGSVTVPHPNIEEVALSTTGEIPFY GKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVIPTSGDVVVVATDALMTGYTG DFDSVIDCNTCVTQTVDFSLDPTFTIETITLPQDAVSRTQRRGRTGRGKPGIYRFVAPGERPSGMFDSSV LCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFTGLTHIDAHFLSQTKQSGENLPYL VAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLGAVQNEITLTHPVTKYIMTCMSADLEVV							
Or select file containing sequence(s)	Choose File No file chosen							
Choose sequence format	auto detect format							
	Choose a Prediction Method							
Prediction Method	IEDB recommended Help on prediction method selections							
	Specify what to make binding predictions for							
Select species/locus	Human, HLA-DP V							
Select MHC allele(s) Select α & β chains separately if applicable: Select full HLA reference set: ?	Allele DPA1*01/DPB1*04:01							
Select 7-allele HLA reference set: 📋 🕐	L <u>pload allele file</u> (3)							
Specify Output								
AND ANALYSIS RESOURCE	WWW.IEDB.ORG							

MHC-II Binding Prediction Results

Input Sequences

#	Name	Sequence
1	HCV_NS3	APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCING VCWTVYHGAGTRTIASPKGPVIQMYTNVDQDLVGWPAPQGSRSLTPCTCG SSDLYLVTRHADVIPVRRGDSRGSLLSPRPISYLKGSSGGPLLCPAGHA VGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPVVPQSFQVA HLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDP NIRTGVRTIITTGSPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSI LGIGTVLDQAETAGARLVVLATATPPGSVTVPHPNIEEVALSTTGEIPFY GKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVI PTSGDVVVVATDALMTGYTGDFDSVIDCNTCVTQTVDFSLDPTFITEIT LPQDAVSRTQRRGRGGKPGIYRFVAPGERPSGMFDSSVLCECYDAGCA WYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFTGLTHIDAHFLSQT KQSGENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLY RLGAVQNEITLTHPVTKYIMTCMSADLEVVT

Result

Prediction method: IEDB recommended | Low percentile_rank = good binders Download result

Citations

Check to expand the result:

Allele 🔶	# 🗢	Start 🗢	End 🗢	Peptide 🔶	Method used 🔶	Percentile rank 🔻
HLA-DPA1*01/DPB1*04:01	1	527	541	DHLEFWEGVFTGLTH	Consensus (comb.lib./smm/nn)	2.52
HLA-DPA1*01/DPB1*04:01	1	528	542	HLEFWEGVFTGLTHI	Consensus (comb.lib./smm/nn)	2.57
HLA-DPA1*01/DPB1*04:01	1	526	540	QDHLEFWEGVFTGLT	Consensus (comb.lib./smm/nn)	2.62
HLA-DPA1*01/DPB1*04:01	1	529	543	LEFWEGVFTGLTHID	Consensus (comb.lib./smm/nn)	3.13
HLA-DPA1*01/DPB1*04:01	1	525	539	CQDHLEFWEGVFTGL	Consensus (comb.lib./smm/nn)	3.26
HLA-DPA1*01/DPB1*04:01	1	39	53	AAQTFLATCINGVCW	Consensus (comb.lib./smm/nn)	3.80
HLA-DPA1*01/DPB1*04:01	1	262	276	GSPITYSTYGKFLAD	Consensus (comb.lib./smm/nn)	4.07
HLA-DPA1*01/DPB1*04:01	1	40	54	AQTFLATCINGVCWT	Consensus (comb.lib./smm/nn)	4.08
HLA-DPA1*01/DPB1*04:01	1	263	277	SPITYSTYGKFLADG	Consensus (comb.lib./smm/nn)	4.08
HLA-DPA1*01/DPB1*04:01	1	38	52	TAAQTFLATCINGVC	Consensus (comb.lib./smm/nn)	4.13
HLA-DPA1*01/DPB1*04:01	1	37	51	STAAQTFLATCINGV	Consensus (comb.lib./smm/nn)	4.56
HLA-DPA1*01/DPB1*04:01	1	261	275	TGSPITYSTYGKFLA	Consensus (comb.lib./smm/nn)	4.78
HLA-DPA1*01/DPB1*04:01	1	530	544	EFWEGVFTGLTHIDA	Consensus (comb.lib./smm/nn)	5
HLA-DPA1*01/DPB1*04:01	1	102	116	SDLYLVTRHADVIPV	Consensus (comb.lib./smm/nn)	7.45
HLA-DPA1*01/DPB1*04:01	1	41	55	QTFLATCINGVCWTV	Consensus (comb.lib./smm/nn)	7.57
HLA-DPA1*01/DPB1*04:01	1	101	115	SSDLYLVTRHADVIP	Consensus (comb.lib./smm/nn)	7.57
HLA-DPA1*01/DPB1*04:01	1	260	274	TTGSPITYSTYGKFL	Consensus (comb.lib./smm/nn)	7.71
HLA-DPA1*01/DPB1*04:01	1	100	114	GSSDLYLVTRHADVI	Consensus (comb.lib./smm/nn)	7.85
HLA-DPA1*01/DPB1*04:01	1	531	545	FWEGVFTGLTHIDAH	Consensus (comb.lib./smm/nn)	7.97

Expanded Result

Check to expand the result: 🖉															
Allele 🗢	# 🕈	start 👳	ENG 🗢	Pepude 🔶	Method used 🔶	Percentile rank 🔻	Comblib. core 🔷	Comblib. score 🔷	Comblib. rank 🔷	SMM align core 🔷	SMM align IC50(nM) 🔶	SMM align rank 💠	NN align core 🔶	NN align IC50(nM) 💠	NN align rank
HLA-DPA1*01/DPB1*04:01	1	527	541	DHLEFWEGVFTGLTH	Consensus (comb.lib./smm/nn)	2.52	EWEGVETGI	6.90	10.50	EWEGVETGI	310	0.62	EEWEGVETG	39.40	2 52
HLA-DPA1*01/DPB1*04:01	1	528	542	HLEFWEGVFTGLTHI	Consensus (comb.lib./smm/nn)	2.57	FWEGVFTGL	6.90	19.59	FWEGVFTGL	302	0.58	FWEGVFTGL	40.30	2.57
HLA-DPA1*01/DPB1*04:01	1	526	540	QDHLEFWEGVFTGLT	Consensus (comb.lib./smm/nn)	2.62	FWEGVFTGL	6.90	19.59	FWEGVFTGL	310	0.62	EFWEGVFTG	41.30	2.62
HLA-DPA1*01/DPB1*04:01	1	529	543	LEFWEGVFTGLTHID	Consensus (comb.lib./smm/nn)	3.13	FWEGVFTGL	6.90	19.59	FWEGVFTGL	308	0.61	FWEGVFTGL	51.10	3.13
HLA-DPA1*01/DPB1*04:01	1	525	539	CQDHLEFWEGVFTGL	Consensus (comb.lib./smm/nn)	3.26	FWEGVFTGL	6.90	19.59	EFWEGVFTG	320	0.66	FWEGVFTGL	53.50	3.26
HLA-DPA1*01/DPB1*04:01	1	39	53	AAQTFLATCINGVCW	Consensus (comb.lib./smm/nn)	3.80	QTFLATCIN	728.23	45.84	FLATCINGV	742	3.36	FLATCINGV	64.70	3.80
HLA-DPA1*01/DPB1*04:01	1	262	276	GSPITYSTYGKFLAD	Consensus (comb.lib./smm/nn)	4.07	TYSTYGKFL	2.38	15.24	ITYSTYGKF	827	4.07	ITYSTYGKF	54	3.29
HLA-DPA1*01/DPB1*04:01	1	40	54	AQTFLATCINGVCWT	Consensus (comb.lib./smm/nn)	4.08	QTFLATCIN	728.23	45.84	FLATCINGV	746	3.39	FLATCINGV	71.10	4.08
HLA-DPA1*01/DPB1*04:01	1	263	277	SPITYSTYGKFLADG	Consensus (comb.lib./smm/nn)	4.08	TYSTYGKFL	2.38	15.24	ITYSTYGKF	828	4.08	ITYSTYGKF	54.10	3.29
HLA-DPA1*01/DPB1*04:01	1	38	52	TAAQTFLATCINGVC	Consensus (comb.lib./smm/nn)	4.13	TAAQTFLAT	52.52	29.77	FLATCINGV	478	1.49	FLATCINGV	72.20	4.13
HLA-DPA1*01/DPB1*04:01	1	37	51	STAAQTFLATCINGV	Consensus (comb.lib./smm/nn)	4.56	TAAQTFLAT	52.52	29.77	TAAQTFLAT	464	1.41	FLATCINGV	81.80	4.56
HLA-DPA1*01/DPB1*04:01	1	261	275	TGSPITYSTYGKFLA	Consensus (comb.lib./smm/nn)	4.78	TYSTYGKFL	2.38	15.24	ITYSTYGKF	908	4.78	ITYSTYGKF	61	3.61
HLA-DPA1*01/DPB1*04:01	1	530	544	EFWEGVFTGLTHIDA	Consensus (comb.lib./smm/nn)	5	FWEGVFTGL	6.90	19.59	FWEGVFTGL	664	2.75	FWEGVFTGL	92.60	5
HLA-DPA1*01/DPB1*04:01	1	102	116	SDLYLVTRHADVIPV	Consensus (comb.lib./smm/nn)	7.45	LVTRHADVI	23.49	25.43	YLVTRHADV	1194	7.45	YLVTRHADV	149.80	7.04
HLA-DPA1*01/DPB1*04:01	1	41	55	QTFLATCINGVCWTV	Consensus (comb.lib./smm/nn)	7.57	QTFLATCIN	728.23	45.84	FLATCINGV	829	4.09	FLATCINGV	166.90	7.57
HLA-DPA1*01/DPB1*04:01	1	101	115	SSDLYLVTRHADVIP	Consensus (comb.lib./smm/nn)	7.57	LVTRHADVI	23.49	25.43	YLVTRHADV	1206	7.57	YLVTRHADV	160.40	7.37
HLA-DPA1*01/DPB1*04:01	1	260	274	TTGSPITYSTYGKFL	Consensus (comb.lib./smm/nn)	7.71	TYSTYGKFL	2.38	15.24	ITYSTYGKF	1221	7.71	ITYSTYGKF	100.10	5.31
HLA-DPA1*01/DPB1*04:01	1	100	114	GSSDLYLVTRHADVI	Consensus (comb.lib./smm/nn)	7.85	GSSDLYLVT	0.74	11.33	YLVTRHADV	1183	7.34	YLVTRHADV	176.10	7.85
HLA-DPA1*01/DPB1*04:01	1	531	545	FWEGVFTGLTHIDAH	Consensus (comb.lib./smm/nn)	7.97	FWEGVFTGL	6.90	19.59	FWEGVFTGL	728	3.24	FWEGVFTGL	179.70	7.97
HLA-DPA1*01/DPB1*04:01	1	103	117	DLYLVTRHADVIPVR	Consensus (comb.lib./smm/nn)	8.57	LVTRHADVI	23.49	25.43	YLVTRHADV	1307	8.57	YLVTRHADV	169.50	7.65
HLA-DPA1*01/DPB1*04:01	1	36	50	VSTAAQTFLATCING	Consensus (comb.lib./smm/nn)	9.33	TAAQTFLAT	52.52	29.77	TAAQTFLAT	374	0.93	AAQTFLATC	230.40	9.33
HLA-DPA1*01/DPB1*04:01	1	557	571	LPYLVAYQATVCARA	Consensus (comb.lib./smm/nn)	9.76	LVAYQATVC	19.93	24.60	YLVAYQATV	594	2.25	YLVAYQATV	247.70	9.76
HLA-DPA1*01/DPB1*04:01	1	264	278	PITYSTYGKFLADGG	Consensus (comb.lib./smm/nn)	9.80	TYSTYGKFL	2.38	15.24	STYGKFLAD	1430	9.80	ITYSTYGKF	60.60	3.60

Result – Consensus percentile rank

Method used 🛛 🔶	Percentile rank 🔻	Comblib. core 🔷	Comblib. score 🔶	Comblib. rank 🔷	SMM align core 🔶	SMM align IC50(nM) 🔷	SMM align rank 🜩	NN align core 🗢	NN align IC50(nM) 🔷	NN align rank 🔶
Consensus (comb.lib./smm/nn)	2.52	FWEGVFTGL	6.90	19.59	FWEGVFTGL	310	0.62	EFWEGVFTG	39.40	2.52
Consensus (comb.lib./smm/nn)	2.57	FWEGVFTGL	6.90	19.59	FWEGVFTGL	302	0.58	FWEGVFTGL	40.30	2.57
Consensus (comb.lib./smm/nn)	2.62	FWEGVFTGL	6.90	19.59	FWEGVFTGL	310	0.62	EFWEGVFTG	41.30	2.62
Consensus (comb.lib./smm/nn)	3.13	FWEGVFTGL	6.90	19.59	FWEGVFTGL	308	0.61	FWEGVFTGL	51.10	3.13
Consensus (comb.lib./smm/nn)	3.26	FWEGVFTGL	6.90	19.59	EFWEGVFTG	320	0.66	FWEGVFTGL	53.50	3.26
Consensus (comb.lib./smm/nn)	3.80	QTFLATCIN	728.23	45.84	FLATCINGV	742	3.36	FLATCINGV	64.70	3.80
Consensus (comb.lib./smm/nn)	4.07	TYSTYGKFL	2.38	15.24	ITYSTYGKF	827	4.07	ITYSTYGKF	54	3.29
Consensus (comb.lib./smm/nn)	4.08	QTFLATCIN	728.23	45.84	FLATCINGV	746	3.39	FLATCINGV	71.10	4.08
Consensus (comb.lib./smm/nn)	4.08	TYSTYGKFL	2.38	15.24	ITYSTYGKF	828	4.08	ITYSTYGKF	54.10	3.29
Consensus (comb.lib./smm/nn)	4.13	TAAQTFLAT	52.52	29.77	FLATCINGV	478	1.49	FLATCINGV	72.20	4.13
Consensus (comb.lib./smm/nn)	4.56	TAAQTFLAT	52.52	29.77	TAAQTFLAT	464	1.41	FLATCINGV	81.80	4.56
Consensus (comb.lib./smm/nn)	4.78	TYSTYGKFL	2.38	15.24	ITYSTYGKF	908	4.78	ITYSTYGKF	61	3.61
Consensus (comb.lib./smm/nn)	5	FWEGVFTGL	6.90	19.59	FWEGVFTGL	664	2.75	FWEGVFTGL	92.60	5
Consensus (comb.lib./smm/nn)	7.45	LVTRHADVI	23.49	25.43	YLVTRHADV	1194	7.45	YLVTRHADV	149.80	7.04
Consensus (comb.lib./smm/nn)	7.57	QTFLATCIN	728.23	45.84	FLATCINGV	829	4.09	FLATCINGV	166.90	7.57

Download result

Citations:

If you use these predictions in a manuscript, please include the following in the method section: The MHCII binding predictions were made on 9/29/2014 using the IEDB analysis resource Consensus tool [1] [2].

- 1. Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 4(4):e1000048.
- 2. Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B. 2010. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics. 11:568.

Result – Downloaded file (CSV)

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N
1	allele	seq_num	start	end	peptide	method	percentile_rank	comblib_c	comblib_s	comblib_r	smm_alig	smm_aligi	smm_alig	nn_alig
2	HLA-DPA1*01/DPB1*0401	1	527	541	DHLEFWEGVFTGLTH	Consensus (comb.lib./smm/nn)	2.52	FWEGVFT	6.9	19.59	FWEGVFT	310	0.62	EFWEG
3	HLA-DPA1*01/DPB1*0401	1	528	542	HLEFWEGVFTGLTHI	Consensus (comb.lib./smm/nn)	2.57	FWEGVFT	6.9	19.59	FWEGVFT	302	0.58	FWEGV
4	HLA-DPA1*01/DPB1*0401	1	526	5 540	QDHLEFWEGVFTGLT	Consensus (comb.lib./smm/nn)	2.62	FWEGVFT	6.9	19.59	FWEGVFT	310	0.62	EFWEG
5	HLA-DPA1*01/DPB1*0401	1	529	543	LEFWEGVFTGLTHID	Consensus (comb.lib./smm/nn)	3.13	FWEGVFT	6.9	19.59	FWEGVFT	308	0.61	FWEGV
6	HLA-DPA1*01/DPB1*0401	1	525	539	CQDHLEFWEGVFTGL	Consensus (comb.lib./smm/nn)	3.26	FWEGVFT	6.9	19.59	EFWEGVF	320	0.66	FWEGV
7	HLA-DPA1*01/DPB1*0401	1	39	53	AAQTFLATCINGVCW	Consensus (comb.lib./smm/nn)	3.8	QTFLATCI	728.23	45.84	FLATCING	742	3.36	FLATCIN
8	HLA-DPA1*01/DPB1*0401	1	262	2 276	GSPITYSTYGKFLAD	Consensus (comb.lib./smm/nn)	4.07	TYSTYGKFI	2.38	15.24	ITYSTYGKF	827	4.07	ITYSTYG
9	HLA-DPA1*01/DPB1*0401	1	40) 54	AQTFLATCINGVCWT	Consensus (comb.lib./smm/nn)	4.08	QTFLATCI	728.23	45.84	FLATCING	746	3.39	FLATCIN
10	HLA-DPA1*01/DPB1*0401	1	263	3 277	SPITYSTYGKFLADG	Consensus (comb.lib./smm/nn)	4.08	TYSTYGKFI	2.38	15.24	ITYSTYGKF	828	4.08	ITYSTYG
11	HLA-DPA1*01/DPB1*0401	1	38	3 52	TAAQTFLATCINGVC	Consensus (comb.lib./smm/nn)	4.13	TAAQTFLA	52.52	29.77	FLATCING	478	1.49	FLATCIN
12	HLA-DPA1*01/DPB1*0401	1	37	7 51	STAAQTFLATCINGV	Consensus (comb.lib./smm/nn)	4.56	TAAQTFLA	52.52	29.77	TAAQTFLA	464	1.41	FLATCIN
13	HLA-DPA1*01/DPB1*0401	1	261	L 275	TGSPITYSTYGKFLA	Consensus (comb.lib./smm/nn)	4.78	TYSTYGKFI	2.38	15.24	ITYSTYGKF	908	4.78	ITYSTYG
14	HLA-DPA1*01/DPB1*0401	1	530	544	EFWEGVFTGLTHIDA	Consensus (comb.lib./smm/nn)	5	FWEGVFT	6.9	19.59	FWEGVFT	664	2.75	FWEGV
15	HLA-DPA1*01/DPB1*0401	1	102	2 116	SDLYLVTRHADVIPV	Consensus (comb.lib./smm/nn)	7.45	LVTRHAD\	23.49	25.43	YLVTRHAD	1194	7.45	YLVTRH
16	HLA-DPA1*01/DPB1*0401	1	41	L 55	QTFLATCINGVCWTV	Consensus (comb.lib./smm/nn)	7.57	QTFLATCI	728.23	45.84	FLATCING	829	4.09	FLATCIN
17	HLA-DPA1*01/DPB1*0401	1	101	115	SSDLYLVTRHADVIP	Consensus (comb.lib./smm/nn)	7.57	LVTRHAD\	23.49	25.43	YLVTRHAD	1206	7.57	YLVTRH
18	HLA-DPA1*01/DPB1*0401	1	260	274	TTGSPITYSTYGKFL	Consensus (comb.lib./smm/nn)	7.71	TYSTYGKFI	2.38	15.24	ITYSTYGKF	1221	7.71	ITYSTYG
19	HLA-DPA1*01/DPB1*0401	1	100) 114	GSSDLYLVTRHADVI	Consensus (comb.lib./smm/nn)	7.85	GSSDLYLV	0.74	11.33	YLVTRHAD	1183	7.34	YLVTRH
20	HLA-DPA1*01/DPB1*0401	1	531	L 545	FWEGVFTGLTHIDAH	Consensus (comb.lib./smm/nn)	7.97	FWEGVFT	6.9	19.59	FWEGVFT	728	3.24	FWEGV
21	HLA-DPA1*01/DPB1*0401	1	103	3 117	DLYLVTRHADVIPVR	Consensus (comb.lib./smm/nn)	8.57	LVTRHAD\	23.49	25.43	YLVTRHAD	1307	8.57	YLVTRH
22	HLA-DPA1*01/DPB1*0401	1	36	5 50	VSTAAQTFLATCING	Consensus (comb.lib./smm/nn)	9.33	TAAQTFLA	52.52	29.77	TAAQTFLA	374	0.93	AAQTFL
23	HLA-DPA1*01/DPB1*0401	1	557	7 571	LPYLVAYQATVCARA	Consensus (comb.lib./smm/nn)	9.76	LVAYQAT\	19.93	24.6	YLVAYQAT	594	2.25	YLVAYO
24	HLA-DPA1*01/DPB1*0401	1	264	278	PITYSTYGKFLADGG	Consensus (comb.lib./smm/nn)	9.8	TYSTYGKFI	2.38	15.24	STYGKFLA	1430	9.8	ITYSTYG
25	HLA-DPA1*01/DPB1*0401	1	99	113	CGSSDLYLVTRHADV	Consensus (comb.lib./smm/nn)	10.02	GSSDLYLV	0.74	11.33	LYLVTRHA	1185	7.36	YLVTRH
26	HLA-DPA1*01/DPB1*0401	1	558	572	PYLVAYQATVCARAQ	Consensus (comb.lib./smm/nn)	10.5	LVAYQAT\	19.93	24.6	YLVAYQAT	1257	8.07	AYQAT
27	HLA-DPA1*01/DPB1*0401	1	35	5 49	IVSTAAQTFLATCIN	Consensus (comb.lib./smm/nn)	10.61	IVSTAAQT	50.69	29.58	TAAQTFLA	371	0.91	AAQTFL
28	HLA-DPA1*01/DPB1*0401	1	559	573	YLVAYQATVCARAQA	Consensus (comb.lib./smm/nn)	10.76	LVAYQAT\	19.93	24.6	YLVAYQAT	1251	8.01	AYQAT
29	HLA-DPA1*01/DPB1*0401	1	34	48	QIVSTAAQTFLATCI	Consensus (comb.lib./smm/nn)	10.89	IVSTAAQT	50.69	29.58	TAAQTFLA	367	0.89	AAQTFL
30	HLA-DPA1*01/DPB1*0401	1	265	5 279	ITYSTYGKFLADGGC	Consensus (comb.lib./smm/nn)	12.18	TYSTYGKFI	2.38	15.24	ITYSTYGKF	1665	12.18	YSTYGK
31	HLA-DPA1*01/DPB1*0401	1	33	3 47	VQIVSTAAQTFLATC	Consensus (comb.lib./smm/nn)	13.08	IVSTAAQT	50.69	29.58	TAAQTFLA	377	0.94	AAQTFL
32	HLA-DPA1*01/DPB1*0401	1	259	273	ITTGSPITYSTYGKF	Consensus (comb.lib./smm/nn)	13.28	ITYSTYGKF	926.52	47.4	GSPITYSTY	1339	8.88	ITYSTYG
33	HLA-DPA1*01/DPB1*0401	1	556	5 570	NLPYLVAYQATVCAR	Consensus (comb.lib./smm/nn)	13.94	LVAYQAT\	19.93	24.6	YLVAYQAT	658	2.71	YLVAYO
34	HLA-DPA1*01/DPB1*0401	1	512	2 526	RLRAYMNTPGLPVCQ	Consensus (comb.lib./smm/nn)	15.04	RAYMNTP	16.44	23.64	YMNTPGL	310	0.62	AYMNT
35	HLA-DPA1*01/DPB1*0401	1	266	5 280	TYSTYGKFLADGGCS	Consensus (comb.lib./smm/nn)	15.24	TYSTYGKFI	2.38	15.24	STYGKFLA	2971	25.27	YSTYGK
36	HLA-DPA1*01/DPB1*0401	1	513	527	LRAYMNTPGLPVCQD	Consensus (comb.lib./smm/nn)	15.66	RAYMNTP	16.44	23.64	YMNTPGL	310	0.62	YMNTP
37	HLA-DPA1*01/DPB1*0401	1	511	525	VRLRAYMNTPGLPVC	Consensus (comb.lib./smm/nn)	16.06	VRLRAYMI	4.2	17.48	YMNTPGL	311	0.62	YMNTP
38	HLA-DPA1*01/DPB1*0401	1	42	2 56	TFLATCINGVCWTVY	Consensus (comb.lib./smm/nn)	16.28	TFLATCIN	27375.94	68.61	FLATCING	206	3 16.28	FLATCIN
39	HLA-DPA1*01/DPB1*0401	1	483	497	SGMFDSSVLCECYDA	Consensus (comb.lib./smm/nn)	16.7	GMFDSSV	2166.88	52.9	FDSSVLCE	1664	12.17	MFDSS\
40	HLA-DPA1*01/DPB1*0401	1	532	2 546	WEGVFTGLTHIDAHF	Consensus (comb.lib./smm/nn)	17.22	GVFTGLTH	164.94	36.49	GVFTGLTH	2145	17.08	GVFTGL

Result – Email

IEDB Tools MHC class II prediction result (2018-10-03 16:28:50) Inbox ×

IEDB Tools <Prediction-results-noreply@tools.iedb.org>

to me 💌

Your MHC class II prediction completed on the IEDB servers (http://tools.iedb.org/mhcii/) and the result is attached in csv format.

29

www.IEDB.org

Input parameters Method: recommended Number of sequences: 1 Input sequences: attached Alleles: DPA1*01-DPB1*04:01

Job parameters Submission date: 2018-10-03 16:28:50 Completion date: 2018-10-03 16:28:53 Total walltime since submission: 3 seconds

2 Attachments

	A					е		0	
	date	ang san	nieł	mi		preprieter	endinal.	provide, and	or the
3	HADMITT		1	8.27	841	DHLIPPING	Compress por	2.80	PMIN
3	ILADPATT D		1	596	643	ILD/VCOVTH	Othersense (con	2.5	ENCR
-4	ILAUMITE.		1	5.6	540	ODHLIMCO!	Contention (con	26	INCO
	HADNI 9 T		4	529	643	LETWEDATIO	Compress (pow	5.0	I PAECI
	HADNITC		4	5.26	611	CODEFFER	Company (com	12	I PARTS
	HADMITT		1	39	6.8	ANDRATCH	Gamerana june	31	APPER
	HADRUT D		1	263	379	GRAD STOCK	Concession (con-	1.0	DEP
	ILADATTS:		1	- 60	64	ADITLATORE	Company Inco	1.0	OTRA.
- 14	RADWITT		7	212	217	SPITTETY DR	Contention and	1.0	11107
	HADMITS.		1	34	62	TANDITATOP	Company to a	4.5	TANCE
-	HADNEDD		4	77	- 54	STAACITUATE	Company (con	45	TANCE
- 10	HADNUTE		4	281	218	TEANTHING	Company in a	679	DARTH
	HADAUTE		1	8.30	612	EPIME#13.1	Consuma june		PARTS.
- 10	HADALTE		1	10	15	30.11/10/06	Company Inco	1.0	10100-0
-	HADMITT		1	41		GTEATONOV	Camping to a	1.20	OTHA
	ILADAI TO		1	101	115	SOCULATE N	Company too	2.5	0191

Guidelines: Selecting binders

- Based on Percentile rank or MHC binding affinity?
 Recommendation: IEDB Percentile rank
- Cut-off guidelines:
 - Percentile rank ≤ 10.0 (Percentile rank on linear scale (0-100), lower value = better binder)
 - MHC binding affinity $IC_{50} \leq 1000nM$
- Select all peptides with IEDB percentile rank \leq 10.0

Alternate approaches for selecting binders

- Recommended threshold is arbitrary.
- Change cut-off values depending on your need
 - e.g. in case you have too few or too many predicted binders.
- Set a desired percentage within your peptide set (irrespective of IEDB percentile rank) in case you want to study a fixed number of best possible peptides.

Issue of overlapping peptides

• The tool breaks the sequence into all possible 15-mers - Peptides overlapping by 14 amino acid residues

	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν	C
1	allele	seq_ni	start	end	peptide	method	percent	comblib_core	comblib	comblib	smm_align_core	smm_al	smm_al	nn_align_core	nn_a
2	HLA-DPA1*01/DPB1*0401	1	527	541	DHLEFWEGVFTGLTH	Consensus (com	2.52	FWEGVFTGL	6.9	19.59	FWEGVFTGL	310	0.62	EFWEGVFTG	3
3	HLA-DPA1*01/DPB1*0401	1	528	542	HLEFWEGVFTGLTHI	Consensus (com	2.57	FWEGVFTGL	6.9	19.59	FWEGVFTGL	302	0.58	FWEGVFTGL	4
4	HLA-DPA1*01/DPB1*0401	1	526	540	QDHLEFWEGVFTGLT	Consensus (com	2.62	FWEGVFTGL	6.9	19.59	FWEGVFTGL	310	0.62	EFWEGVFTG	4
5	HLA-DPA1*01/DPB1*0401	1	529	543	LEFWEGVFTGLTHID	Consensus (com	3.13	FWEGVFTGL	6.9	19.59	FWEGVFTGL	308	0.61	FWEGVFTGL	5
6	HLA-DPA1*01/DPB1*0401	1	525	539	CQDHLEFWEGVFTGL	Consensus (com	3.26	FWEGVFTGL	6.9	19.59	EFWEGVFTG	320	0.66	FWEGVFTGL	5
7	HLA-DPA1*01/DPB1*0401	1	39	53	AAQTFLATCINGVCW	Consensus (com	3.8	QTFLATCIN	728.23	45.84	FLATCINGV	742	3.36	FLATCINGV	(
8	HLA-DPA1*01/DPB1*0401	1	262	276	GSPITYSTYGKFLAD	Consensus (com	4.07	TYSTYGKFL	2.38	15.24	ITYSTYGKF	827	4.07	ITYSTYGKF	
9	HLA-DPA1*01/DPB1*0401	1	40	54	AQTFLATCINGVCWT	Consensus (com	4.08	QTFLATCIN	728.23	45.84	FLATCINGV	746	3.39	FLATCINGV	7
10	HLA-DPA1*01/DPB1*0401	1	263	277	SPITYSTYGKFLADG	Consensus (com	4.08	TYSTYGKFL	2.38	15.24	ITYSTYGKF	828	4.08	ITYSTYGKF	5
11	HLA-DPA1*01/DPB1*0401	1	38	52	TAAQTFLATCINGVC	Consensus (com	4.13	TAAQTFLAT	52.52	29.77	FLATCINGV	478	1.49	FLATCINGV	7
12	HLA-DPA1*01/DPB1*0401	1	37	51	STAAQTFLATCINGV	Consensus (com	4.56	TAAQTFLAT	52.52	29.77	TAAQTFLAT	464	1.41	FLATCINGV	8
13	HLA-DPA1*01/DPB1*0401	1	261	275	TGSPITYSTYGKFLA	Consensus (com	4.78	TYSTYGKFL	2.38	15.24	ITYSTYGKF	908	4.78	ITYSTYGKF	
14	HLA-DPA1*01/DPB1*0401	1	530	544	EFWEGVFTGLTHIDA	Consensus (com	5	FWEGVFTGL	6.9	19.59	FWEGVFTGL	664	2.75	FWEGVFTGL	9
15	HLA-DPA1*01/DPB1*0401	1	102	116	SDLYLVTRHADVIPV	Consensus (com	7.45	LVTRHADVI	23.49	25.43	YLVTRHADV	1194	7.45	YLVTRHADV	14
16	HLA-DPA1*01/DPB1*0401	1	41	55	QTFLATCINGVCWTV	Consensus (com	7.57	QTFLATCIN	728.23	45.84	FLATCINGV	829	4.09	FLATCINGV	16
17	HLA-DPA1*01/DPB1*0401	1	101	115	SSDLYLVTRHADVIP	Consensus (com	7.57	LVTRHADVI	23.49	25.43	YLVTRHADV	1206	7.57	YLVTRHADV	16
18	HLA-DPA1*01/DPB1*0401	1	260	274	TTGSPITYSTYGKFL	Consensus (com	7.71	TYSTYGKFL	2.38	15.24	ITYSTYGKF	1221	7.71	ITYSTYGKF	10
19	HLA-DPA1*01/DPB1*0401	1	100	114	GSSDLYLVTRHADVI	Consensus (com	7.85	GSSDLYLVT	0.74	11.33	YLVTRHADV	1183	7.34	YLVTRHADV	17
20	HLA-DPA1*01/DPB1*0401	1	531	545	FWEGVFTGLTHIDAH	Consensus (com	7.97	FWEGVFTGL	6.9	19.59	FWEGVFTGL	728	3.24	F3VEGVFTGL	17
21	HLA-DPA1*01/DPB1*0401	1	103	117	DLYLVTRHADVIPVR	Consensus (com	8.57	LVTRHADVI	23.49	25.43	YLVTRHADV	1307	8.57	YLVTRHADV	16

Issue of overlapping peptides: Solution

- Pre-processing:
 - Generate 15mers overlapping by 10 AA residues and do the prediction

APITAYAQQTRGLLGCIITSLTGRD

APITAYAQQTRGLLG------

----YAQQTRGLLGCIITS-----

-----RGLLGCIITSLTGRD

- 15 is mostly preferred length for class II
- 10 AA overlap captures minimal 15mers with all possible
 9mer binding cores with at least 1 flanking residue
- Python/Perl script or Excel

Issue of overlapping peptides: Solution

• Post-processing:

 Remove largely overlapping peptides after prediction (based on same binding core or position)

1	А	В	С	D	E	G	Н	1	J	К	L	М	N	0
1	allele	seq_nu	start	end	peptide	percent	comblib_core	comblib	comblib	smm_align_core	smm_al	smm_al	nn_align_core	nn_a
2	HLA-DPA1*01/DPB1*0401	1	527	541	DHLEFWEGVFTGLTH	2.52	FWEGVFTGL	6.9	19.59	FWEGVFTGL	310	0.62	EFWEGVFTG	3
3	HLA-DPA1*01/DPB1*0401	1	528	542	HLEFWEGVFTGLTHI	2.57	FWEGVFTGL	6.9	19.59	FWEGVFTGL	302	0.58	FWEGVFTGL	4
4	HLA-DPA1*01/DPB1*0401	1	526	540	QDHLEFWEGVFTGLT	2.62	FWEGVFTGL	6.9	19.59	FWEGVFTGL	310	0.62	EFWEGVFTG	4
5	HLA-DPA1*01/DPB1*0401	1	529	543	LEFWEGVFTGLTHID	3.13	FWEGVFTGL	6.9	19.59	FWEGVFTGL	308	0.61	FWEGVFTGL	5
6	HLA-DPA1*01/DPB1*0401	1	525	539	CQDHLEFWEGVFTGL	3.26	FWEGVFTGL	6.9	19.59	EFWEGVFTG	320	0.66	FWEGVFTGL	5
7	HLA-DPA1*01/DPB1*0401	1	39	53	AAQTFLATCINGVCW	3.8	QTFLATCIN	728.23	45.84	FLATCINGV	742	3.36	FLATCINGV	6
8	HLA-DPA1*01/DPB1*0401	1	262	276	GSPITYSTYGKFLAD	4.07	TYSTYGKFL	2.38	15.24	ITYSTYGKF	827	4.07	ITYSTYGKF	
9	HLA-DPA1*01/DPB1*0401	1	40	54	AQTFLATCINGVCWT	4.08	QTFLATCIN	728.23	45.84	FLATCINGV	746	3.39	FLATCINGV	7
10	HLA-DPA1*01/DPB1*0401	1	263	277	SPITYSTYGKFLADG	4.08	TYSTYGKFL	2.38	15.24	ITYSTYGKF	828	4.08	ITYSTYGKF	5

Prediction of promiscuous binders

Promiscuous binders

- Peptides that bind to more than one MHC molecule.
- Significance:
 - Associated with stronger antigenicity & larger population coverage
 - Important in reducing immunogenicity of therapeutic proteins
 - Can be predicted based on binding affinity
- Consensus percentile rank threshold ≤ **20.0**¹

1. Oseroff et al. 2010, J Immunol

Promiscuous binders - Multiple alleles

MHC-II Binding Predictions

	Specify Sequence(s)				
Enter protein sequence(s) in FASTA format (Browse for sequences in NCBI)	>HCV_NS3 APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPKGP VIQMYTNVDQDLVGWPAPQGSRSLTPCTCGSSDLYLVTRHADVIPVRRGDSRGSLLSPRPISYLKGSSG GPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPVVPQSFQVAHLHAPTGSGK STKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGSPITYSTYGKFLADGGCS GGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATATPPGSVTVPHPNIEEVALSTTGEIPFY GKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVIPTSGDVVVVATDALMTGYTG DFDSVIDCNTCVTQTVDFSLDPTFTIETITLPQDAVSRTQRRGRTGRGKPGIYRFVAPGERPSGMFDSSV LCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFTGLTHIDAHFLSQTKQSGENLPYL VAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLGAVQNEITLTHPVTKYIMTCMSADLEVV				
Or select file containing sequence(s)	Choose File No file chosen				
Choose sequence format					
	Choose a Prediction Method				
Prediction Method	IEDB recommended Help on prediction method selections				
	Specify what to make binding predictions for				
Select species/locus	Human, HLA-DR 🔻				
Select MHC allele(s) Select α & β chains separately if applicable: Select HLA allele reference set:	Allele DPA1*01/DPB1*04:01 DPA1*03:01/DPB1*04:02 DPA1*02:01/DPB1*05:01 DRB1*01:01 Upload allele file ?				
EPITOPE DATABASE	WINTER ST				

MHC-II Binding Prediction Results

Input Sequences

Multiple alleles - Result

38 WWW.IEDB.org

#	Name	Sequence
1	HCV_NS3	APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCING VCWTVYHGAGTRTIASPKGPVIQMYTNVDQDLVGWPAPQGSRSLTPCTCG SSDLYLVTRHADVIPVRRGDSRGSLSPRPISYLKGSSGGPLCPAGHA VGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPFVVPQSFQVA HLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDP NIRTGVRTITTGSPITYSTYGKFLADGGCSGGAYDIICDECHSTDATSI LGIGTVLDQAETAGARLVVLATATPPGSVTVPHPNIEEVALSTTGEIPFY GKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVI PTSGDVVVVATDALMTGYTGDFDSVIDCNTCVTQTVDFSLDPTFITEITI LPQDAVSRTQRRGRTGRGKFGIYRFVAPGERPSGMFDSSVLCECYDAGCA WYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFTGLTHIDAHFLSQT KQSGENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLY RLGAVQNEITLTHPVTKYIMTCMSADLEVVT

Prediction method: IEDB recommended | Low percentile_rank = good binders

Download result 🔳

Citations

Check to expanded the result:

Allele 🔶	#\$	Start 🗢	End 🜩	Peptide 🔶	Method used 🛛 🔶	Percentile rank 👻
HLA-DRB1*01:01	1	222	236	GYKVLVLNPSVAATL	Consensus (comb.lib./smm/nn)	0.32
HLA-DRB1*01:01	1	223	237	YKVLVLNPSVAATLG	Consensus (comb.lib./smm/nn)	0.54
HLA-DRB1*01:01	1	220	234	AQGYKVLVLNPSVAA	Consensus (comb.lib./smm/nn)	1.06
HLA-DRB1*01:01	1	221	235	QGYKVLVLNPSVAAT	Consensus (comb.lib./smm/nn)	1.06
HLA-DRB1*01:01	1	224	238	KVLVLNPSVAATLGF	Consensus (comb.lib./smm/nn)	1.33
HLA-DRB1*01:01	1	219	233	AAQGYKVLVLNPSVA	Consensus (comb.lib./smm/nn)	2.18
HLA-DPA1*01/DPB1*04:01	1	527	541	DHLEFWEGVFTGLTH	Consensus (comb.lib./smm/nn)	2.52
HLA-DPA1*01/DPB1*04:01	1	528	542	HLEFWEGVFTGLTHI	Consensus (comb.lib./smm/nn)	2.57
HLA-DPA1*01/DPB1*04:01	1	526	540	QDHLEFWEGVFTGLT	Consensus (comb.lib./smm/nn)	2.62
HLA-DRB1*01:01	1	378	392	AAKLVALGINAVAYY	Consensus (comb.lib./smm/nn)	2.64
HLA-DRB1*01:01	1	225	239	VLVLNPSVAATLGFG	Consensus (comb.lib./smm/nn)	2.82
HLA-DRB1*01:01	1	379	393	AKLVALGINAVAYYR	Consensus (comb.lib./smm/nn)	3.09
HLA-DPA1*01/DPB1*04:01	1	529	543	LEFWEGVFTGLTHID	Consensus (comb.lib./smm/nn)	3.13
HLA-DPA1*01/DPB1*04:01	1	525	539	CQDHLEFWEGVFTGL	Consensus (comb.lib./smm/nn)	3.26
HLA-DPA1*01/DPB1*04:01	1	39	53	AAQTFLATCINGVCW	Consensus (comb.lib./smm/nn)	3.80
HLA-DRB1*01:01	1	377	391	LAAKLVALGINAVAY	Consensus (comb.lib./smm/nn)	3.97
HLA-DPA1*01/DPB1*04:01	1	262	276	GSPITYSTYGKFLAD	Consensus (comb.lib./smm/nn)	4.07

Panel of 27 class II alleles to allow for global coverage

Locus	Molecule	Phenotype frequency	Locus	Molecule	Phenotype frequency
DRB1	DRB1*01:01	5.4	DQA1/DQB1	DQA1*05:01/DQB1*02:01	11.3
	DRB1*03:01	13.7		DQA1*05:01/DQB1*03:01	35.1
	DRB1*04:01	4.6		DQA1*03:01/DQB1*03:02	19.0
	DRB1*04:05	6.2		DQA1*04:01/DQB1*04:02	12.8
	DRB1*07:01	13.5		DQA1*01:01/DQB1*05:01	14.6
	DRB1*08:02	4.9		DQA1*01:02/DQB1*06:02	14.6
	DRB1*09:01	6.2		Combined	81.6
	DRB1*11:01	11.8	DPA1/DPB1	DPA1*02:01/DPB1*01:01	16.0
	DRB1*12:01	3.9		DPA1*01:03/DPB1*02:01	17.5
	DRB1*13:02	7.7		DPA1*01/DPB1*04:01	36.2
	DRB1*15:01	12.2		DPA1*03:01/DPB1*04:02	41.6
	Combined	71.1		DPA1*02:01/DPB1*05:01	21.7
DRB3/4/5	DRB3*01:01	26.1		DPA1*02:01/DPB1*14:01	7.4
	DRB3*02:02	34.3		Combined	94.5
	DRB4*01:01	41.8			
	DRB5*01:01	16.0			
	Combined	87.7	Greenbaum	et al., 2011. Immunogenetics	

- Set of alleles used for promiscuous binder predictions
- Link provided in the "Help" tab (section-3) (allele file can be uploaded to the tool)

www.IEDB.org

Promiscuous binders

 Binders with ≥ 50% alleles binding (consensus percentile ≤ 20.0) considered promiscuous binders

					Count of	% of alleles
1	#	Peptide	Start	End	alleles binding	binding (out of 27)
2	1	APITAYAQQTRGLLG	1	15	8	29.6%
3	2	YAQQTRGLLGCIITS	6	20	3	11.1%
4	3	RGLLGCIITSLTGRD	11	25	8	29.6%
5	4	CIITSLTGRDKNQVE	16	30	8	29.6%
6	5	LTGRDKNQVEGEVQI	21	35	0	0.0%
7	6	<u>KNOVEGEVOIVSTAA</u>	26	40	5	18.5%
8	7	GEVQIVSTAAQTFLA	31	45	21	77.8%
9	8	VSTAAQTFLATCING	36	50	4	14.8%
10	9	QTFLATCINGVCWTV	41	55	11	40.7%
11	10	TCINGVCWTVYHGAG	46	60	1	3.7%
12	11	VCWTVYHGAGTRTIA	51	65	9	33.3%
13	12	YHGAGTRTIASPKGP	56	70	7	25.9%
14	13	TRTIASPKGPVIQMY	61	75	3	11.1%
15	14	SPKGPVIQMYTNVDQ	66	80	9	33.3%
16	15	VIQMYTNVDQDLVGW	71	85	9	33.3%
17	16	TNVDQDLVGWPAPQG	76	90	3	11.1%
18	17	DLVGWPAPQGSRSLT	81	95	2	7.4%
19	18	PAPQGSRSLTPCTCG	86	100	0	0.0%

IMMUNE EPITOPE DATADAJE AND ANALYSIS RESOURCE

www.IEDB.org

40

Paul et al. (2015) Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes. *Journal of immunological methods*.

- Aim was to capture maximum immune response with minimum no. of peptides
- 6 peptide datasets with measured immune responses (SFCs/10⁶ PBMCs)
- 15 or 16mer peptide sets with 10 AA residues overlapping

Dataset	Purpose	No. of Antigens	Total peptides	No. of donors	Reference
Der p/f (House dust mite)	Training data	4	156	20	Hinz et al., 2015, CEA
PhI p (Timothy grass)	Training data	10	425	25	Oseroff et al., 2010, JI
TB-1	Training data	4	71	18	Arlehamn et al., 2012, JI
TB-2	Training data	11	499	32	Arlehamn et al., 2016, PLoS Path
Cockroach	Validation data	6	463	19	Dillon et al., 2015, CEA
Pertussis	Validation data	9	785	23	Bancroft et al., 2016, CEA
TOTAL		44	2399	137	
AND ANALYSIS RESOLIDCE					www.IEDB.o

- Optimal results obtained with a set of 7 alleles:
 - 3 DRB1 alleles with frequency ≥ 12% (DRB1*03:01, DRB1*07:01, DRB1*15:01) and 4 DRB3/4/5 alleles (DRB3*01:01, DRB3*02:02, DRB4*01:01, DRB5*01:01)
- Top 21.41% peptides ≈ 50% response
- The median consensus percentile rank of the 7 alleles ≈ 20.0
 Universal prediction threshold

1. Paul et al. (2015) Journal of Immunological Methods 422, 28-34

- Generate 15mers overlapping by 10 AA residues
- Do binding prediction for the **7 selected alleles**
- Estimate the **median consensus percentile rank**
- Select all peptides with median consensus percentile rank ≤
 20.0
- This set of peptides can capture \approx 50% of the response
- These 7 alleles can be selected as a set in **Tepitool**
- This is implemented in **CD4Episcore** tool

Exercise

Exercise

• Question:

Predict the alleles from the given set of 6 MHC class II alleles to which the peptide "**HLEFWEGVFTGLTHI**" may bind.

Locus	Alleles
DPA1/DPB1	DPA1*01/DPB1*04:01
	DPA1*01:03/DPB1*02:01
DQA1/DQB1	DQA1*05:01/DQB1*03:01
	DQA1*03:01/DQB1*03:02
DRB1	DRB1*03:01
	DRB1*07:01

Exercise

• Steps:

1. Predict the binding affinity of the peptide for the given alleles

Peptide:	HLEFWEGVFTGLTHI					
Alleles:	Locus	Alleles				
	DPA1/DPB1	DPA1*01/DPB1*04:01				
		DPA1*01:03/DPB1*02:01				
	DQA1/DQB1	DQA1*05:01/DQB1*03:01				
		DQA1*03:01/DQB1*03:02				
	DRB1	DRB1*03:01				
		DRB1*07:01				

2. Identify alleles with consensus percentile rank \leq 10.0

Exercise: Input

MHC-II Binding Predictions

IMMUNI

AND AN

Specify Sequence(s)							
Enter protein sequence(s) in FASTA format (Browse for sequences in NCBI)	HLEFWEGVFTGLTHI						
Or select file containing sequence(s)	Choose File No file chosen						
Choose sequence format	auto detect format						
	Choose a Prediction Method						
Prediction Method	IEDB recommended						
	Specify what to make binding predictions for						
Select species/locus	Human, HLA-DR 🔻						
Select MHC allele(s) Select α & β chains separately if applicable: □ ③ Select HLA allele reference set: □	Allele DPA1*01/DPB1*04:01 DPA1*01:03/DPB1*02:01 DQA1*05:01/DQB1*03:01 DQA1*03:01/DQB1*03:02 DRB1*03:01 DRB1*07:01 Upload allele file ?						

Exercise: Output

MHC-II Binding Prediction Results

Input Sequences

#	Name	Sequence
1	sequence 1	HLEFWEGVFTGLTHI

Prediction method: IEDB recommended | Low percentile_rank = good binders

Download result 🗵

Citations

Check to expanded the result:

Allele 🔶	#\$	Start 🔶	End 🔶	Peptide 🔶	Method used 🛛 🔶	Percentile rank 👻
HLA-DPA1*01/DPB1*04:01	1	1	15	HLEFWEGVFTGLTHI	Consensus (comb.lib./smm/nn)	2.57
HLA-DPA1*01:03/DPB1*02:01	1	1	15	HLEFWEGVFTGLTHI	Consensus (comb.lib./smm/nn)	3.76
HLA-DRB1*07:01	1	1	15	HLEFWEGVFTGLTHI	Consensus (comb.lib./smm/nn)	19.31
HLA-DQA1*05:01/DQB1*03:01	1	1	15	HLEFWEGVFTGLTHI	Consensus (comb.lib./smm/nn)	23.49
HLA-DQA1*03:01/DQB1*03:02	1	1	15	HLEFWEGVFTGLTHI	Consensus (comb.lib./smm/nn)	31.14
HLA-DRB1*03:01	1	1	15	HLEFWEGVFTGLTHI	Consensus (smm/nn/sturniolo)	70.94

Download result 🗵

Tepitool

http://tools.iedb.org/tepitool

TepiTool

- New interface to prediction of class I and class II epitope candidates.
- Motivation:
 - Make tools more user friendly
 - Provide recommendations as default
 - Provide a set of top peptides as concise results
- In the form of a step-by-step wizard (6 steps).
- Provides recommendations as default values.
- Input parameters can be adjusted as desired.
- New methods incorporated.
- Available at http://tools.iedb.org/tepitool

Step 1: Sequence data

← → C ☆ http://tools.iedb.org/tepitool/

IEDB Analysis Resource - Labs

Home	Help	Reference	Download	Contact	
------	------	-----------	----------	---------	--

TepiTool

Steps 1 2 3 4 5 6		
SEQUENCE - Provide	sequence data:	
Sequences	Enter sequences in FASTA or PLAIN format:	
	>Seq_1 MKALIVLGLVLLSVTVQGKVFCELARTLKRLGMDGYRGISLANWMCLAKW >Seq_2 MLLALVCLLSCLANSDF >Seq_3 MKALIVLGLVLLSVTVQGKVFERCELAR	
	Or upload file containing sequences: Choose File No file chosen	

52

W.IEDB.ORG

Step 2: Species & Allele class

Step 3: Alleles - Class I

Steps 1 2 3 4 5 6			
ALLELES - Specify alle	eles:	Current selection	s:
Alleles	Human - Class I Select from list of frequently occuring alleles (Frequency > 1%) Select from list of all available alleles Select from list of representative alleles from different HLA supertypes Use panel of 27 most frequent A & B alleles Upload allele file A*01:01 A*02:06 A*03:01 A*11:01 A*23:01 A*24:02 A*25:01 A*26:01 A*29:02 A*30:01	Current selection No. of sequences Host species Allele class Selected alleles <u>Reset alleles</u>	s: 3 Human Class I 1.A*02:0 2.A*02:0 3.A*03:0
Start Over Back	Next		

Steps 1 2 3 4 5 6			
PEPTIDES - Select peptides to be included in prediction:			s:
Pentides to be included in prediction		No. of sequences	3
	Apply default settings for low number of peptides	Host species	Human
	Apply default settings for high number of peptides	Allele class	Class I
	Custom selection - Select your own settings	Selected alleles	1.A*02:01 2.A*02:06 3.A*03:01
	Handling of duplicate peptides:		
	- Duplicate peptides will be removed.		
	Peptide lengths to be considered in prediction:		
	- Only peptide length 9 will be included 9mers = 58		
Conservancy analysis (Uses only peptides conserved in specified % of sequences)	 No Yes 		
Start Over Back Next			

Steps 1 2 3 4 5 6			
PEPTIDES - Select peptides to be included in pr	Current selections:		
Peptides to be included in prediction	 Apply default settings for low number of peptides Apply default settings for moderate number of peptides Apply default settings for high number of peptides Custom selection - Select your own settings Handling of duplicate peptides: Duplicate peptides will be removed. Peptide lengths to be considered in prediction: Only peptide lengths 8-11 will be included 8mers = 60 9mers = 58 10mers = 56 	No. of sequences Host species Allele class Selected alleles	3 Human Class I 1.A*02:01 2.A*02:06 3.A*03:01
Conservancy analysis (Uses only peptides conserved in specified % of sequences) Start Over Back Next	 No Yes 		

Steps 1 2 3 4 5 6			
PEPTIDES - Select peptides to be included in prediction: Current selections:			s:
Pentides to be included in prediction		No. of sequences	3
r opides to be included in prediction	Apply default settings for low number of peptides Apply default settings for moderate number of peptides	Host species	Human
	Apply default settings for high number of pentides	Allele class	Class I
	 O Custom selection - Select your own settings 	Selected alleles	1.A*02:01 2.A*02:06 3.A*03:01
	Handling of duplicate peptides:		
	- Duplicate peptides will not be removed.		
	Peptide lengths to be considered in prediction:		
	- All peptide lengths (8-14) will be included 8mers = 74 9mers = 71 10mers = 68 11mers = 65 12mers = 62 13mers = 59 14mers = 56		
Conservancy analysis (Uses only peptides conserved in specified % of sequences)	 No Yes 		
Start Over Back Next	Start Over Back Next		
			57

www.IEDB.org

Steps 1 2 3 4 5 6			
PEPTIDES - Select peptides to be included in p	Current selection	IS:	
Peptides to be included in prediction	 Apply default settings for low number of peptides Apply default settings for moderate number of peptides Apply default settings for high number of peptides Custom selection - Select your own settings Handling of duplicate peptides: Remove duplicate peptides Keep duplicate peptides Peptide lengths to be considered in prediction: 8mers = 60 9mers = 58 10mers = 56 11mers = 54 12mers = 52 13mers = 50 14mers = 48 	No. of sequences Host species Allele class Selected alleles	3 Human Class I 1.A*02:01 2.A*02:06 3.A*03:01
Conservancy analysis (Uses only peptides conserved in specified % of sequences)	 No ● Yes Use peptides conserved in 50% sequences ▼ 		
Start Over Back Next			58

Steps 1 2 3 4 5 6

METHOD - Select prediction & peptide selection methods and cutoff values:		Current selections:	
Dradiation mathed to use		No. of sequences	3
Prediction method to use	TEDB recommended	Host species	Human
		Allele class	Class I
Selection of predicted peptides	Select peptides based on predicted percentile rank ▼ Select peptides with predicted consensus percentile rank ≤ 1	Selected alleles	1.A*02:01 2.A*02:06 3.A*03:01
		Duplicate peptides	Removed
Start Over Back Next		Peptide lengths selected	9mers 10mers
		No. of peptides included (Not considering conservancy analysis)	114
		Conservancy analysis	Peptides conserved in at least 50% sequences
	Select peptides based on predicted percentile rank Select peptides based on predicted percentile rank Select peptides based on predicted IC50 Select peptides based on MHC specific predicted bindin Select top x% of predicted peptides Select top x number of predicted peptides	▼ ng threshold	

Current selections:	
No. of sequences	3
Host species	Human
Allele class	Class I
Selected alleles	1.A*02:01 2.A*02:06 3.A*03:01
Duplicate peptides	Removed
Peptide lengths selected	9mers 10mers
No. of peptides included (Not considering conservancy analysis)	114
Conservancy analysis	Peptides conserved in at least 50% sequences

Steps 1 2 3 4 5 6

METHOD - Select prediction & peptide selection methods and cutoff values:		
Prediction method to use	IEDB recommended	
Prediction method to use Selection of predicted peptides	IEDB recommended ▼ Select peptides based on MHC specific predicted binding threshold ▼ (Each MHC allele has its own IC50 threshold. Predicted peptides will correspond to 75% of immune response. Prediction method is SMM) As of now, only the following alleles are covered by this method: A*01:01 A*02:01 A*02:03 A*02:01 A*02:03 A*02:01 A*02:04 A*03:01 A*11:01 A*23:01 A*22:002 A*26:01 A*22:01 A*26:01 A*28:01 A*33:01 A*33:01 A*33:01 A*38:01 B*38:01 B*14:02 B*14:02 B*14:02 B*33:01 B*38:01 B*38:01 B*44:03 B*44:03 B*44:03 B*44:03 B*44:03 B*44:03 B*48:01 B*58:01	
	Please refer this paper for more details: Paul et al. (2013) J of Immunol. 191(12): 5831-5839.	

Current selections:		
No. of sequences	3	
Host species	Human	
Allele class	Class I	
Selected alleles	1.A*02:01 2.A*02:06 3.A*03:01	
Duplicate peptides	Removed	
Peptide lengths selected	9mers 10mers	
No. of peptides included (Not considering conservancy analysis)	114	
Conservancy analysis	Peptides conserved in at least 50% sequences	

RG

61

Steps 1 2 3 4 5 6

METHOD - Select prediction & peptide selection methods and cutoff values:		
Prediction method to use	IEDB recommended	
Selection of predicted peptides	Select top x% of predicted peptides ▼ Select top 2% ▼ of 114 peptides = 2 peptide(s) per allele x 3 allele(s) = 6 peptides (Final selection of predicted peptides done based on percentile rank)	
Start Over Back Next		

Current selections:		
No. of sequences	3	
Host species	Human	
Allele class	Class I	
Selected alleles	1.A*02:01 2.A*02:06 3.A*03:01	
Duplicate peptides	Removed	
Peptide lengths selected	9mers 10mers	
No. of peptides included (Not considering conservancy analysis)	114	
Conservancy analysis	Peptides conserved in at least 50% sequences	

METHOD - Select prediction & pe	ptide selection methods and cutoff values:
Prediction method to use	IEDB recommended
Selection of predicted peptides	Select top x number of predicted peptides Select top 5 peptides per allele (Maximum possible = 114) (Peptide selection done based on percentile rank)
Start Over Back Next	

Current selections:	
No. of sequences	3
Host species	Human
Allele class	Class I
Selected alleles	1.A*02:01 2.A*02:06 3.A*03:01
Duplicate peptides	Removed
Peptide lengths selected	9mers 10mers
No. of peptides included (Not considering conservancy analysis)	114
Conservancy analysis	Peptides conserved in at least 50% sequences

Steps 1 2 3 4 5 6

Step 6: Review & Submit

Steps 1 2 3 4 5 6					
REVIEW: Review selections, ente	er job details & submit data:				
Summary:					
No. of sequences	3				
Host species	Human				
Allele class	Class I				
Alleles	1.A*02:01 2.A*02:06 3.A*03:01				
Duplicate peptides	Removed				
Peptide lengths selected	9mers 10mers				
Approx no. of peptides included	114				
Peptide overlap	N/A (all possible nmers are included in class I)				
Conservancy analysis	Peptides conserved in at least 50% sequences				
Prediction method	IEDB recommended				
Peptide selection criterion	Based on predicted consensus percentile rank (Cutoff selected = 1)				
Job details:					
Job name (optional)	workshop				
Email (optional - will notify when job is finished)	spaul@lji.org				
Start Over Back Submit (Please note that you will not be a	ble to make any more changes once submitted. You will have to start again if you want to do so.)				

Results: Web - Class I

Home Help Reference Download Contact

Prediction results - concise (<u>Download table</u>):

Seq # 🛶	Peptide start 🗤	Peptide end 🛶	Peptide 🗤	Percentile rank 🗤	Allele 📲	Conservancy 🛶
1	5	14	IVLGLVLLSV	0.35	HLA-A*02:06	67%
1	10	19	VLLSVTVQGK	0.45	HLA-A*03:01	67%
1	5	14	IVLGLVLLSV	0.8	HLA-A*02:01	67%

Download results details:

 Complete results
 Prediction results of all peptides

 Conservancy of peptides
 Conservancy of peptides in the sequences

Citation information:

If you use these predictions in a manuscript, please include the following in the method section:

The MHC I binding predictions were done with IEDB analysis resource (TepiTool [1]) using Consensus method [2] which employs SMM, NN and Combinatorial library methods.

1. TepiTool reference

2. Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui HH, Grey H, Sette A. 2006. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia

For complete list of references please click here: References

Results: Web - Class I

Input sequences:

Seq #	Seq title	Sequence
1	Seq_1	MKALIVLGLVLLSVTVQGKVFCELARTLKRLGMDGYRGISLANWMCLAKW
2	Seq_2	MLLALVCLLSCLANSDF
3	Seq_3	MKALIVLGLVLLSVTVQGKVFERCELAR

Other input parameters:

Input summary:	
No. of sequences	3
Host species	Human
Allele class	Class I
Alleles	A*02:01 A*02:06 A*03:01
Duplicate peptides	Removed
Peptide lengths selected	9mers 10mers
Peptide overlap	N/A
Conservancy analysis	Yes (Conservancy cutoff = 50% sequences)
Prediction method	IEDB recommended
Peptide selection criterion	Predicted percentile rank
Cutoff for peptide selection criterion	1
Job name	workshop
Email	spaul@lji.org

Results: Complete results

_		-	-	-	-		-			-		-			-		_
1	allele	seq_num	start er	nd	length	peptide	method	percentile_rank	ann_ic50	ann_rank	smm_ic50 s	mm_rank	comblib_	comblib	s netmhcpa n	etmhcpa	n_rank
2	HLA-A*02:01	2	1	9	1	9 MLLALVCLL	Consensus (ann/smm/comblib_sidney2008)	0.5	11	0.5	10.17	0.3	3.09E-05	1.8			
3	HLA-A*02:01	1	40	48		9 SLANWMCLA	Consensus (ann/smm/comblib_sidney2008)	0.8	20	0.8	43.86	0.8	0.00017	9.1			
4	HLA-A*03:01	1	41	49	1	9 LANWMCLAK	Consensus (ann/smm)	1.1	122	0.9	322.7	1.3	-	-			
5	HLA-A*03:01	1	11	19)	9 LLSVTVQGK	Consensus (ann/smm)	1.15	214	1.3	233.78	1	-	-			
6	HLA-A*03:01	3	11	19)	9 LLSVTVQGK	Consensus (ann/smm)	1.15	214	1.3	233.78	1	-	-			
7	HLA-A*02:06	2	1	9)	9 MLLALVCLL	Consensus (ann/smm)	1.35	24	1.6	34.96	1.1	-	-			
8	HLA-A*02:01	1	6	14	4	9 VLGLVLLSV	Consensus (ann/smm/comblib_sidney2008)	1.4	42	1.4	40.28	0.7	4.27E-05	2.4			
9	HLA-A*02:01	3	6	14	l l	9 VLGLVLLSV	Consensus (ann/smm/comblib_sidney2008)	1.4	42	1.4	40.28	0.7	4.27E-05	2.4			
10	HLA-A*02:06	1	16	24	l l	9 VQGKVFCEL	Consensus (ann/smm)	1.45	24	1.6	37.98	1.3	-	-			
11	HLA-A*02:01	1	8	16	i	9 GLVLLSVTV	Consensus (ann/smm/comblib_sidney2008)	2.2	89	2.2	89.97	1.5	0.0001	5.7			
12	HLA-A*02:01	3	8	16	i	9 GLVLLSVTV	Consensus (ann/smm/comblib_sidney2008)	2.2	89	2.2	89.97	1.5	0.0001	5.7			
13	HLA-A*02:01	2	4	12	2	9 ALVCLLSCL	Consensus (ann/smm/comblib_sidney2008)	2.4	118	2.4	101.42	1.6	0.000537	23			
14	HLA-A*02:06	3	19	27	'	9 KVFERCELA	Consensus (ann/smm)	2.75	42	2.2	103.65	3.3	-	-			
15	HLA-A*02:06	1	2	10)	9 KALIVLGLV	Consensus (ann/smm)	2.9	66	3	86.81	2.8	-	-			
16	HLA-A*02:06	3	2	10)	9 KALIVLGLV	Consensus (ann/smm)	2.9	66	3	86.81	2.8	-	-			
17	HLA-A*02:06	1	4	12	2	9 LIVLGLVLL	Consensus (ann/smm)	3.6	119	3.8	105.33	3.4	-	-			
18	HLA-A*02:06	3	4	12	2	9 LIVLGLVLL	Consensus (ann/smm)	3.6	119	3.8	105.33	3.4	-	-			
19	HLA-A*02:06	2	4	12	2	9 ALVCLLSCL	Consensus (ann/smm)	3.6	104	3.6	111.83	3.6	-	-			
20	HLA-A*02:06	1	40	48		9 SLANWMCLA	Consensus (ann/smm)	3.9	49	2.4	183.89	5.4	-	-			
21	HLA-A*02:06	1	8	16	i	9 GLVLLSVTV	Consensus (ann/smm)	4	219	5.3	81.01	2.7	-	-			
22	HLA-A*02:06	3	8	16	i	9 GLVLLSVTV	Consensus (ann/smm)	4	219	5.3	81.01	2.7	-	-			
23	HLA-A*02:06	1	6	14	Ļ	9 VLGLVLLSV	Consensus (ann/smm)	4.55	318	6.1	92.8	3	-	-			
24	HLA-A*02:06	3	6	14	Ļ	9 VLGLVLLSV	Consensus (ann/smm)	4.55	318	6.1	92.8	3	-	-			
25	HLA-A*02:01	1	3	11		9 ALIVLGLVL	Consensus (ann/smm/comblib_sidney2008)	4.7	766	4.7	257.1	3.3	0.000776	30			
26	HLA-A*02:01	3	3	11		9 ALIVLGLVL	Consensus (ann/smm/comblib_sidney2008)	4.7	766	4.7	257.1	3.3	0.000776	30			
27	HLA-A*02:01	1	4	12	2	9 LIVLGLVLL	Consensus (ann/smm/comblib_sidney2008)	5.1	911	5.1	367.38	4.1	0.00213	52			
28	HLA-A*02:01	3	4	12	2	9 LIVLGLVLL	Consensus (ann/smm/comblib_sidney2008)	5.1	911	5.1	367.38	4.1	0.00213	52			
29	HLA-A*02:01	3	19	27	,	9 KVFERCELA	Consensus (ann/smm/comblib_sidney2008)	5.1	436	4	562.48	5.1	0.000711	. 28			
30	HLA-A*02:01	2	7	15	i	9 CLLSCLANS	Consensus (ann/smm/comblib_sidney2008)	5.9	1346	5.9	767.56	6.4	3.63E-05	2.1			
31	HLA-A*03:01	2	1	9)	9 MLLALVCLL	Consensus (ann/smm)	5.9	9050	6.5	2715.19	5.3	-	-			
32	HLA-A*02:01	1	2	10)	9 KALIVLGLV	Consensus (ann/smm/comblib_sidney2008)	6	1408	6	634.03	5.6	0.000425	20			
33	HLA-A*02:01	3	2	10)	9 KALIVLGLV	Consensus (ann/smm/comblib_sidney2008)	6	1408	6	634.03	5.6	0.000425	20			
34	HLA-A*03:01	1	22	30		9 CELARTLKR	Consensus (ann/smm)	6.45	11796	8.4	2127.16	4.5	-	-			
35	HLA-A*02:01	1	16	24	Ļ	9 VQGKVFCEL	Consensus (ann/smm/comblib_sidney2008)	6.8	1947	6.6	859.23	6.8	0.01	. 75			
36	HLA-A*03:01	3	15	23		9 TVQGKVFER	Consensus (ann/smm)	6.8	8195	6	4685.98	7.6	-	-			
37	HLA-A*03:01	1	40	48		9 SLANWMCLA	Consensus (ann/smm)	7.15	7856	5.8	5751.75	8.5	-	-			
						0 10/2021 ADT		~ *	100			~ ~			D (

www.IEDB.org

Results: Peptide conservancy

	Α	В	С	D	E	F	G	Н	
1	Peptides	Seq_num	Peptide_start	Peptide_end	Seq_1	Seq_2	Seq_3	Conservancy %	
2	MKALIVLGL	1	1	9	1	0	1	67%	
3	KALIVLGLV	1	2	10	1	0	1	67%	
4	ALIVLGLVL	1	3	11	1	0	1	67%	
5	LIVLGLVLL	1	4	12	1	0	1	67%	
6	IVLGLVLLS	1	5	13	1	0	1	67%	
7	VLGLVLLSV	1	6	14	1	0	1	67%	
8	LGLVLLSVT	1	7	15	1	0	1	67%	
9	GLVLLSVTV	1	8	16	1	0	1	67%	
10	LVLLSVTVQ	1	9	17	1	0	1	67%	
11	VLLSVTVQG	1	10	18	1	0	1	67%	
12	LLSVTVQGK	1	11	19	1	0	1	67%	
13	LSVTVQGKV	1	12	20	1	0	1	67%	
14	SVTVQGKVF	1	13	21	1	0	1	67%	
15	VTVQGKVFC	1	14	22	1	0	0	33%	
16	TVQGKVFCE	1	15	23	1	0	0	33%	
17	VQGKVFCEL	1	16	24	1	0	0	33%	
18	QGKVFCELA	1	17	25	1	0	0	33%	
19	GKVFCELAR	1	18	26	1	0	0	33%	
20	KVFCELART	1	19	27	1	0	0	33%	
21	VFCELARTL	1	20	28	1	0	0	33%	
22	FCELARTLK	1	21	29	1	0	0	33%	
23	CELARTLKR	1	22	30	1	0	0	33%	
24	ELARTLKRL	1	23	31	1	0	0	33%	
25	LARTLKRLG	1	24	32	1	0	0	33%	
26	ARTLKRLGM	1	25	33	1	0	0	33%	
27	RTLKRLGMD	1	26	34	1	0	0	33%	
28	TLKRLGMDG	1	27	35	1	0	0	33%	

Results: Email

Binding prediction results for job "workshop" Inbox x

TepiTool-results-noreply@tepitool.iedb.org

to me 🖃

Binding prediction for your job "workshop" is finished. Below are the concise results based on your input parameters. Please go back to the browser running TepiTool for complete details.

Seq #	Peptide start	Peptide end	Peptide	Percentile rank	Allele	Conservancy
1	5	14	IVLGLVLLSV	0.35	HLA-A*02:06	67%
1	10	19	VLLSVTVQGK	0.45	HLA-A*03:01	67%
1	5	14	IVLGLVLLSV	0.8	HLA-A*02:01	67%

Download concise results table Download complete results table Download conservancy of peptides

If you use these predictions in a manuscript, please include the following in the method section:

The MHC I binding predictions were done with IEDB analysis resource (TepiTool [1]) using Consensus method [2] which employs SMM, ANN and Combinatorial library methods.

1. Paul, S., S idney, J., Sette, A., and Peters, B. 2016. TepiTool: A pipeline for computational prediction of T cell epitope candidates. *Curr. Protoc. Immunol.* 114:18.19.1-18.19.24.

2. Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui HH, Grey H, Sette A. 2006. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. *Nat Biotechnol.* 24: 817-819.

For complete list of references please click here: References

Click here to go to Tepitool home page

3:35 PM (1 minute ago) 🕁 📃 🔸

Step 3: Alleles - Class II

ALLELES - Spec	tify alleles:	Current selection	IS:
Allalaa		No. of sequences	3
Alleles	Human - Class II	Host species	Human
	Predict for custom allele set	Allele class	Class II
	 Predict for pre-selected panel of alleles Predict using pre-selected allele sets & methods 	Selected alleles Reset alleles	DPA1*01:03/DPB1*02 DQA1*03:01/DQB1*03 DRB1*01:01 DRB1*01:02 DRB1*01:03
	Options:		
	Select from list of alleles		
	O Upload allele file		
	Select α and β chains separately when applicable \Box		
	DQ T		
	DOA1*01/DOB1*05-01		
	DQA1*01:02/DQB1*06:02		
	DQA1*03:01/DQB1*03:02		
	DQA1*05:01/DQB1*02:01		
	DQA1*05:01/DQB1*03:01		
Start Over	Back Next		
	Dack Next		

Step 3: Alleles - Class II

ALLELES - Spec	ify alleles:	Current selection	Current selections:		
Allolos	University Olivers II	No. of sequences	3		
Alleles	Human - Class II	Host species	Human		
	 Predict for custom allele set 	Allele class	Class II		
	 Predict for pre-selected panel of alleles Predict using pre-selected allele sets & methods 	Selected alleles Reset alleles			
	Options: Use the panel of 26 most frequent alleles	• No. of	allel	es will	
	Select all DR 🗹 Select all DP 🗹 Select all DQ 🗹	be up	dated	d to 27	
	DRB1*01:01 DPA1*01/DPB1*04:01 DQA1*01:01/DQB1*05:01 DRB1*03:01 DPA1*01:03/DPB1*02:01 DQA1*01:01/DQB1*06:02 DRB1*04:01 DPA1*02:01/DPB1*01:01 DQA1*03:01/DQB1*03:02 DRB1*04:05 DPA1*02:01/DPB1*05:01 DQA1*04:01/DQB1*03:02 DRB1*07:01 DPA1*03:01/DPB1*04:02 DQA1*05:01/DQB1*04:02 DRB1*08:02 DPA1*03:01/DPB1*04:02 DQA1*05:01/DQB1*03:01 DRB1*109:01 DRB1*11:01 DQA1*05:01/DQB1*03:01 DRB1*11:01 DRB1*13:02 DRB1*15:01 DRB3*01:01 DRB3*01:01 DRB3*02:02 DRB4*01:01 DRB5*01:01 DRB5*01:01				
				71	
Start Over	lack Next			DB.OR	

Step 3: Alleles - Class II

Step 3: Alleles - Class II

No. of alleles will be updated to 27

Current selection	s:
lo. of sequences	3
lost species	Human
llele class	Class II
elected alleles	1. HLA-DPA1*01/DPB1*04:01 2. HLA-DPA1*01:03/DPB1*02:01 3. HLA-DPA1*02:01/DPB1*01:01 4. HLA-DPA1*02:01/DPB1*05:01 5. HLA-DPA1*03:01/DPB1*04:02 6. HLA-DQA1*01:01/DQB1*05:01 7. HLA-DQA1*01:02/DQB1*06:02 8. HLA-DQA1*03:01/DQB1*03:02 9. HLA-DQA1*05:01/DQB1*04:02 10. HLA-DQA1*05:01/DQB1*02:01 11. HLA-DQA1*05:01/DQB1*03:01 12. HLA-DRB1*01:01 13. HLA-DRB1*01:01 14. HLA-DRB1*04:05 16. HLA-DRB1*04:05 16. HLA-DRB1*09:01 17. HLA-DRB1*109:01 19. HLA-DRB1*11:01 20. HLA-DRB1*11:01 21. HLA-DRB1*11:01 22. HLA-DRB1*15:01 23. HLA-DRB1*15:01 23. HLA-DRB3*01:01 24. HLA-DRB4*01:01 26. HLA-DRB5*01:01

PEPTIDES - Select peptides to be included in pr	ediction:	Current selection	s:
Peptides to be included in prediction	 Apply default settings for low number of peptides Apply default settings for moderate number of peptides Apply default settings for high number of peptides Custom selection - Select your own settings 	No. of sequences Host species Allele class Selected alleles	3 Human Class II 1.DPA1*01:03/DPB1*02:01 2.DQA1*03:01/DQB1*03:02
	Handling of duplicate peptides		3.DRB1*01:01 4.DRB1*01:02 5.DRB1*01:03
	Desired no. of overlapping residues for 15mers - No. of overlapping residues fixed at 10.		
	Approximate no. of peptides to be considered for prediction = 12		
Conservancy analysis (Uses only peptides conserved in specified % of sequences)	 No Yes Use peptides conserved in 50% sequences 		
Start Over Back Next			

Steps 1 2 3 4 5 6

IMMUNE EPITOPE DATABASE

AND ANALYSIS RESOURCE

PEPTIDES - Select peptides to be included in prediction:		Current selections:		
Destides to be included in prediction		No. of sequences	3	
replices to be included in prediction	Apply default settings for low number of peptides	Host species	Human	
	Apply default settings for high number of peptides Apply default settings for high number of peptides	Allele class	Class II	
	Custom selection - Select your own settings	Selected alleles	1.DPA1*01:03/DPB1*02:01 2.DQA1*03:01/DQB1*03:02 3.DBB1*01:01	
	Handling of duplicate peptides		4.DRB1*01:02 5.DRB1*01:03	
	- Duplicate peptides will be removed.			
	Desired no. of overlapping residues for 15mers			
	- No. of overlapping residues fixed at 9			
	- No. of overlapping residues lixed at o.			
	Approximate no. of peptides to be considered for prediction =			
	10			
Conservancy analysis	○ No			
(Uses only peptides conserved in specified % of sequences)	• Yes			
	Use peptides conserved in 50% sequences <pre> •</pre>			
Start Over Back Next				

Steps 1 2 3 4 5 6				
PEPTIDES - Select peptides to be included in prediction:		Current selections:		
Pontidos to be included in prediction		No. of sequences	3	
replices to be included in prediction	Apply default settings for low number of peptides	Host species	Human	
	Apply default settings for moderate number of peptides Apply default settings for high number of peptides	Allele class	Class II	
	Custom selection - Select your own settings	Selected alleles	1.DPA1*01:03/DPB1*02:01 2.DQA1*03:01/DQB1*03:02 3.DRB1*01:01	
	Handling of duplicate peptides		4.DRB1*01:02 5.DRB1*01:03	
	- Duplicate peptides will not be removed.			
	Desired no. of overlapping residues for 15mers			
	- No. of overlapping residues fixed at 10.			
	Approximate no. of peptides to be considered for prediction =			
	14			
Conservancy analysis (Uses only peptides conserved in specified % of	○ No ● Yes			
sequences)	Use peptides conserved in 50% sequences •			
Start Over Back Next				

IMMUNE EPITOPE DATABASE

AND ANALYSIS RESOURCE

Stens 1 2 3 4 5 6

IMMUNE EPITOPE DATABASE

AND ANALYSIS RESOURCE

PEPTIDES - Select peptides to be included in pr	ediction:	Current selection	s:
Destides to be included in prediction		No. of sequences	3
Peptides to be included in prediction	Apply default settings for low number of peptides	Host species	Human
	Apply default settings for moderate number of peptides Apply default settings for high number of peptides	Allele class	Class II
	 Apply default settings for high number of peptides Custom selection - Select your own settings 	Selected alleles	1.DPA1*01:03/DPB1*02:01 2.DQA1*03:01/DQB1*03:02 3.DRB1*01:01
	Handling of duplicate peptides		4.DRB1*01:02 5.DRB1*01:03
	 Remove duplicate peptides Keep duplicate peptides 		
	Desired no. of overlapping residues for 15mers		
	10 •		
	Approximate no. of peptides to be considered for prediction =		
	12		
Conservancy analysis (Uses only peptides conserved in specified % of	○ No● Yes		
sequences)	Use peptides conserved in 50% sequences <pre>T</pre>		
Start Over Back Next			

Step 4: Peptides - Class II (7-allele method & panel of 26 most frequent alleles)

PEPTIDES - Select peptides to be included in prediction:			Current selections:		
Handling of duplicate peptides	Duplicate poptides will be removed		No. of sequences	3	
	Duplicate peptides will be removed		Host species	Human	
			Allele class	Class II	
No. of overlapping residues for 15mer peptides to be generated (Peptide length is fixed at 15 for class II)	10		Alleles inolved	1. HLA-DRB1*03:01 2. HLA-DRB1*07:01 2. HLA-DRB1*15:01	
Approximate no. of peptides to be considered for prediction 12				4. HLA-DRB3*01:01 5. HLA-DRB3*02:02 6. HLA-DRB4*01:01	
Start Over Back Next				7. HLA-DRB5*01:01	

Step 5: Method - Class II

METHOD - Select prediction & peptide selection methods and cutoff values:		Current selections:		
Prediction method to use			No. of sequences	3
Prediction method to use	IEDB recommended •		Host species	Human
			Allele class	Class II
Selection of predicted peptides Select peptides based on predicted percentile rank ▼ Select peptides with predicted consenus percentile rank ≤ 10 10		Alleles selected	1.DPA1*01:03/DPB1*02:01 2.DQA1*03:01/DQB1*03:02 3.DRB1*01:01 4.DRB1*01:02 5.DRB1*01:03	
Start Over Back Next		Duplicate peptides	Removed	
			Peptide overlap	10 AA residues
			Approx no. of peptides included (Not considering conservancy analysis)	12
			Conservancy analysis	Peptides conserved in at least 50% sequences
	Select peptides based on pro Select peptides based on pro Select peptides based on pro Select peptides based on pro Select top x% of peptides	edicted percentile rank edicted percentile rank edicted IC50 edicted no. of alleles binding		

Step 5: Method - Class II

METHOD - Select prediction & peptide selection methods and cutoff values:				
Prediction method to use	IEDB recommended			
Selection of predicted peptides	Select peptides based on predicted no. of alleles binding ▼ Select peptides that bind to at least 50% alleles (binding determined by IEDB consensus percentile rank ≤ 20.0)			
Start Over Back Next				

Current selections:	
No. of sequences	3
Host species	Human
Allele class	Class II
Alleles selected	1.DPA1*01:03/DPB1*02:01 2.DQA1*03:01/DQB1*03:02 3.DRB1*01:01 4.DRB1*01:02 5.DRB1*01:03
Duplicate peptides	Removed
Peptide overlap	10 AA residues
Approx no. of peptides included (Not considering conservancy analysis)	12
Conservancy analysis	Peptides conserved in at least 50% sequences

Step 5: Method - Class II (7-allele method)

METHOD - Select prediction & peptide selection methods and cutoff values:		Current selections:		
	ISD2 and an and a d	No. of sequences	3	
Frediction method to use		Host species	Human	
		Allele class	Class II	
Selection of predicted peptides	 Promiscuity based on "7-allele method"* Peptides considered as binders if median consensus percentile ≤ 20 	Alleles involved	1. HLA-DRB1*03:01 2. HLA-DRB1*07:01 3. HLA-DRB1*15:01	
Start Over Back Next			4. HLA-DRB3*01:01 5. HLA-DRB3*02:02 6. HLA-DRB4*01:01 7. HLA-DRB5*01:01	

	3. HLA-DRB1*15:01 4. HLA-DRB3*01:01 5. HLA-DRB3*02:02 6. HLA-DRB4*01:01 7. HLA-DRB5*01:01
Duplicate peptides	Removed
Peptide overlap	10 AA residues
Approx no. of peptides included	12

Step 5: Method - Class II (panel of 26 most frequent alleles)

METHOD - Select prediction & peptide selection methods and cutoff values:			Current
Prediction method to use	IEDB recommended		No. of se
Frediction method to use			Host spe
	Promiscuity based on no. of alleles binding (Peptide considered as binder if it binds to at least 50% of the 26 most frequent alleles)		Allele cla
Selection of predicted peptides			Alleles ir
Start Over Back Next			

Current selections:	
No. of sequences	3
Host species	Human
Allele class	Class II
Alleles involved	1. DPA1*01/DPB1*04:01 2. DPA1*01:03/DPB1*02:01 3. DPA1*02:01/DPB1*01:01 4. DPA1*02:01/DPB1*05:01 5. DPA1*03:01/DPB1*05:01 7. DQA1*01:01/DQB1*05:01 7. DQA1*01:02/DQB1*06:02 8. DQA1*01:02/DQB1*03:02 9. DQA1*05:01/DQB1*03:02 9. DQA1*05:01/DQB1*03:02 10. DQA1*05:01/DQB1*03:01 11. DQA1*05:01/DQB1*03:01 12. DRB1*01:01 13. DRB1*01:01 14. DRB1*04:05 16. DRB1*04:05 16. DRB1*04:05 16. DRB1*09:01 17. DRB1*109:01 19. DRB1*11:01 20. DRB1*12:01 21. DRB1*13:02 22. DRB1*15:01 23. DRB3*01:01 24. DRB3*02:02 25. DRB4*01:01 26. DRB5*01:01
Duplicate peptides	Removed
Peptide overlap	10 AA residues
Approx no. of peptides included	12

Results: Web - Class II

	Home	Н	elp	R	eference		Download		Contact	
--	------	---	-----	---	----------	--	----------	--	---------	--

Prediction results - concise (Download table):

Seq # 🛶	Peptide start 🕶	Peptide end 🗸	Peptide sequence 🕶	Consensus percentile rank 🕶	Allele 📲	Conservancy
1	2	16	KALIVLGLVLLSVTV	2.74	HLA-DRB1*01:01	67.0%
1	1	15	MKALIVLGLVLLSVT	1.15	HLA-DRB1*01:02	67.0%
1	6	20	VLGLVLLSVTVQGKV	1.77	HLA-DRB1*01:02	67.0%

Download results details:

Non-redundant results	Prediction results with redundant peptides within each sequence removed - Includes positives and negatives
Complete results	Prediction results of all peptides
Conservancy of peptides	Conservancy of peptides in the sequences

Citation information:

If you use these predictions in a manuscript, please include the following in the method section:

The MHC II binding predictions were done with IEDB analysis resource (TepiTool [1]) using Consensus method [2,3] which employs SMM_align, I. TepiTool reference

 Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B. 2010. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bio 3. Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation.

 Karosiene E1, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M. 2013. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction m 5. Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, and Lund O. 2008. Quantitative predictions of peptide binding to an

For complete list of references please click here: References

Results: Non-redundant results (Class II)

	A	В	С	D	E	F	G
1	allele	seq_num	start	end	peptide	method	percentile_rank c
2	HLA-DPA1*01:03/DPB1*02:01	1	36	50	YRGISLANWMCLAKW	Consensus (comb.lib./smm/nn)	14.46 (
3	HLA-DPA1*01:03/DPB1*02:01	1	10	24	VLLSVTVQGKVFCEL	Consensus (comb.lib./smm/nn)	17.26 L
4	HLA-DPA1*01:03/DPB1*02:01	1	15	29	TVQGKVFCELARTLK	Consensus (comb.lib./smm/nn)	23.57
5	HLA-DPA1*01:03/DPB1*02:01	1	1	15	MKALIVLGLVLLSVT	Consensus (comb.lib./smm/nn)	24.97 I
6	HLA-DPA1*01:03/DPB1*02:01	1	20	34	VFCELARTLKRLGMD	Consensus (comb.lib./smm/nn)	30.44 \
7	HLA-DPA1*01:03/DPB1*02:01	1	31	45	LGMDGYRGISLANWM	Consensus (comb.lib./smm/nn)	31.43 L
8	HLA-DPA1*01:03/DPB1*02:01	1	26	40	RTLKRLGMDGYRGIS	Consensus (comb.lib./smm/nn)	53.98 L
9	HLA-DPA1*01:03/DPB1*02:01	2	1	15	MLLALVCLLSCLANS	Consensus (comb.lib./smm/nn)	22.65
10	HLA-DPA1*01:03/DPB1*02:01	3	13	27	SVTVQGKVFERCELA	Consensus (comb.lib./smm/nn)	11.07
11	HLA-DPA1*01:03/DPB1*02:01	3	1	15	MKALIVLGLVLLSVT	Consensus (comb.lib./smm/nn)	24.97 I
12	HLA-DPA1*01:03/DPB1*02:01	3	6	20	VLGLVLLSVTVQGKV	Consensus (comb.lib./smm/nn)	29.86 (
13	HLA-DQA1*03:01/DQB1*03:02	1	1	15	MKALIVLGLVLLSVT	Consensus (comb.lib./smm/nn)	15.75 /
14	HLA-DQA1*03:01/DQB1*03:02	1	6	20	VLGLVLLSVTVQGKV	Consensus (comb.lib./smm/nn)	21.69 (
15	HLA-DQA1*03:01/DQB1*03:02	1	33	47	MDGYRGISLANWMCL	Consensus (comb.lib./smm/nn)	27.59 (
16	HLA-DQA1*03:01/DQB1*03:02	1	11	25	LLSVTVQGKVFCELA	Consensus (comb.lib./smm/nn)	42.15 1
17	HLA-DQA1*03:01/DQB1*03:02	1	17	31	QGKVFCELARTLKRL	Consensus (comb.lib./smm/nn)	47.43 \
18	HLA-DQA1*03:01/DQB1*03:02	1	28	42	LKRLGMDGYRGISLA	Consensus (comb.lib./smm/nn)	69.96 [
19	HLA-DQA1*03:01/DQB1*03:02	1	22	36	CELARTLKRLGMDGY	Consensus (comb.lib./smm/nn)	81.47 F
20	HLA-DQA1*03:01/DQB1*03:02	2	2	16	LLALVCLLSCLANSD	Consensus (comb.lib./smm/nn)	28.42 L
21	HLA-DQA1*03:01/DQB1*03:02	3	1	15	MKALIVLGLVLLSVT	Consensus (comb.lib./smm/nn)	15.75 /
22	HLA-DQA1*03:01/DQB1*03:02	3	6	20	VLGLVLLSVTVQGKV	Consensus (comb.lib./smm/nn)	21.69 (
23	HLA-DQA1*03:01/DQB1*03:02	3	11	25	LLSVTVQGKVFERCE	Consensus (comb.lib./smm/nn)	67.65 (
24	HLA-DRB1*01:01	1	2	16	KALIVLGLVLLSVTV	Consensus (comb.lib./smm/nn)	2.74 /
25	HLA-DRB1*01:01	1	7	21	LGLVLLSVTVQGKVF	Consensus (comb.lib./smm/nn)	10.4 (
26	HLA-DRB1*01:01	1	17	31	QGKVFCELARTLKRL	Consensus (comb.lib./smm/nn)	19.65 E
27	HLA-DRB1*01:01	1	33	47	MDGYRGISLANWMCL	Consensus (comb.lib./smm/nn)	31.83 (
28	HLA-DRB1*01:01	1	28	42	LKRLGMDGYRGISLA	Consensus (comb.lib./smm/nn)	33.84 1
29	HLA-DRB1*01:01	1	22	36	CELARTLKRLGMDGY	Consensus (comb.lib./smm/nn)	42.05 E
30	HLA-DRB1*01:01	1	12	26	LSVTVQGKVFCELAR	Consensus (comb.lib./smm/nn)	56.52 \$

Redundancy removal to solve the issue of overlapping peptides

- Post-processing:
 - Remove largely overlapping peptides after prediction

	А	В	С	D	E	G	Н	1	J	К	L	М	Ν	0
1	allele	seq_nu	start	end	peptide	percent	comblib_core	comblib	comblib	smm_align_core	smm_al	smm_al	nn_align_core	nn_a
2	HLA-DPA1*01/DPB1*0401	1	527	541	DHLEFWEGVFTGLTH	2.52	FWEGVFTGL	6.9	19.59	FWEGVFTGL	310	0.62	EFWEGVFTG	3
3	HLA-DPA1*01/DPB1*0401	1	528	542	HLEFWEGVFTGLTHI	2.57	FWEGVFTGL	6.9	19.59	FWEGVFTGL	302	0.58	FWEGVFTGL	4
4	HLA-DPA1*01/DPB1*0401	1	526	540	QDHLEFWEGVFTGLT	2.62	FWEGVFTGL	6.9	19.59	FWEGVFTGL	310	0.62	EFWEGVFTG	4
5	HLA-DPA1*01/DPB1*0401	1	529	543	LEFWEGVFTGLTHID	3.13	FWEGVFTGL	6.9	19.59	FWEGVFTGL	308	0.61	FWEGVFTGL	5
6	HLA-DPA1*01/DPB1*0401	1	525	539	CQDHLEFWEGVFTGL	3.26	FWEGVFTGL	6.9	19.59	EFWEGVFTG	320	0.66	FWEGVFTGL	5
7	HLA-DPA1*01/DPB1*0401	1	39	53	AAQTFLATCINGVCW	3.8	QTFLATCIN	728.23	45.84	FLATCINGV	742	3.36	FLATCINGV	6
8	HLA-DPA1*01/DPB1*0401	1	262	276	GSPITYSTYGKFLAD	4.07	TYSTYGKFL	2.38	15.24	ITYSTYGKF	827	4.07	ITYSTYGKF	
9	HLA-DPA1*01/DPB1*0401	1	40	-54	AQTFLATCINGVCWT	4.08	QTFLATCIN	728.23	45.84	FLATCINGV	746	3.39	FLATCINGV	7
10	HLA-DPA1*01/DPB1*0401	1	263	277	SPITYSTYGKFLADG	4.08	TYSTYGKFL	2.38	15.24	ITYSTYGKF	828	4.08	ITYSTYGKF	5

Other versions

- Run using command line or script
 - Write scripts to run them easily
 - Integrate into your own pipeline

API version

API (Application Programming Interface)

• A programming interface where the client can send parameters to the server over internet and get the processed results back.

IEDB tools API

- Both class I & class II tools can be accessed via the IEDB RESTful Web Services. Other tools are also available.
- Sends request to the tools server at LJI and does prediction based on user supplied parameters.

Advantages:

- No need to install tools on your machine
- No need to use the web interface
- Freely available to all users
- Automatic update without re-installing
- Build custom scripts/tools or integrate into your pipeline
- Submit multiple sequences/alleles/peptide lengths in same command
- Submit large data set and receive results in email

IEDB tools API

RESTful interface (IEDB-API):

Several IEDB Analysis tools can now be accessed via the RESTful (REpresentational State Transfer) Web Services. This service is currently cell epitopes. The service sends POST request to the tools server, and relies on user supplied parameters. Below are some examples for acc

requests to the server will work just as well (including a web browser). The full list of parameters and their values for MHC I and MHC II-binding, MHC I-processing and MHC-NP predictions are given in the table In release 2.15, a new API system for the class I binding predictions was made public. For end users, it should result in faster prediction tir intensive methods such as NetMHCPan and PickPocket.

* If relevant services are missing, please contact us.

Examples for Class-I binding prediction

1) To run a single allele and length combination: \$ curl --data "method=smm&sequence_text=SLYNTVATLYCVHQRIDV&allele=HLA-A*01:01&length=9" http://tools-cluster-interface.iedb.org

2) To specify a version for methods: \$ curl --data "method=ann-3.4&sequence text=ARFTGIKTA&allele=HLA-A*01:01&length=9" http://tools-cluster-interface.iedb.org/tool A "-" is used to separate method name and method version. If the version is not specified, the default version will be choser

Available methods	Available versions
ann	4.0 (default), 3.4
comblib_sidney2008	1.0 (default)
consensus	2.18 (default)
netmhccons	1.1 (default)
netmhcpan	4.0 (default), 2.8, 3.0
netmhcstabpan	1.0 (default)
pickpocket	1.1 (default)
recommended	2.19 (default), 2.18
smm	1.0 (default)
smmpmbec	1.0 (default)

3) To run multiple allele and length combinations:

curl --data "method=recommended&sequence text=SLYNTVATLYCVHORIDV&allele=HLA-A*01:01,HLA-A*02:01&length=8,9" http://tools-clu:

4) To submit multiple sequences at a time, escape the special characters in a fasta-formatted sequence with URI codes. E.g., we can predict for 2 sequences (with fasta names peptide1 and peptide2) with the following code:

\$ curl --data "method=ann&sequence text=%3Epeptide1%0AGHAHKVPRRLLKAAR%0A%3Epeptide2%0ALKAADASADADGSGSGSGSG&allele=HLA-A*01:01, i

5) To recieve the prediction result in you email address, input your email address with a parameter "email address".

E.g., we can send the prediction result to the email address "youremail@example.com" (Don't forget to use your email address to replace it.) with t

\$ curl --data "method=recommended&sequence text=SLYNTVATLYCVHQRIDV&allele=HLA-A*01:01,HLA-A*02:01&length=8,9&email address=you)

	Parameter	Possible values	Default value	Required	Description
	sequence_text			*	Input protein sequence.
4	method	recommended, consensus, netmhcpan, ann, smmpmbec, smm, comblib_sidney2008, netmhccons, pickpocket, netmhcstabpan	recommended		This allows selection from 10 different MHC class I binding prediction methods. 'recommended' method considers, for each allele-length combination, 'consensus' method (which includes ann, smm and comblib) first, and if not available, it uses 'netmhcpan'.
N					To print the usage and list all available methods: <pre>s curldata "" http://tools-cluster- interface.ideh.org/cools.ani/mbci/</pre>

90

WWW IEDB ORG

IEDB tools API sample command – class I

sinu@ubuntu:~/Desktop\$ curl --data "method=recommended&sequence text=SLYNTVATLYCVHQRIDV&allele=HLA-A*01:01&
length=9&email_address=spaul@lji.org" http://tools-cluster-interface.iedb.org/tools_api/mhci/

allele ic50	seq_num smm rank	start	end comblib	length sidney20	peptide 008 score	method e	percent: comblib	ile_rank an sidney2008	n_ic50 rank netmhcpa	ann_rank an ic50	c si netmhcpan	mm r
ank	_		-		_		-	_ ^		_	•	_
HLA-A*01	:01	1	2	10	9	LYNTVATL	Y	Consensus	(ann/smm)	1.1	9049.25 0	.9
1286.92	1.3	-	-	-	-							
HLA-A*01	:01	1	4	12	9	NTVATLY	CV	Consensus	(ann/smm)	4.2	13556.93	2
.9	6061.08	5.5	-	-	-	-						
HLA-A*01	:01	1	8	16	9	TLYCVHQF	RI	Consensus	(ann/smm)	15.0	16287.20	6
36774.77	1	24	-	-	-	-						
HLA-A*01	:01	1	3	11	9	YNTVATLY	(C	Consensus	(ann/smm)	15.25	18322.54	9
.5	27896.52	2	21	-	-	-	-					
HLA-A*01	:01	1	5	13	9	TVATLYC\	/H	Consensus	(ann/smm)	17.6	15675.17	5
.2	49607.80)	30	-	-	-	-					
HLA-A*01	:01	1	1	9	9	SLYNTVAT	٢L	Consensus	(ann/smm)	28.5	19635.42	1
7	85418.12	2	40	-	-	-	-					
HLA-A*01	:01	1	10	18	9	YCVHQRID	V	Consensus	(ann/smm)	31.5	23625.86	3
1	56565.29)	32	-	-	-	-					
HLA-A*01	:01	1	7	15	9	ATLYCVHO)R	Consensus	(ann/smm)	34.0	23237.48	2
9	83090.24	1	39	-	-	-	-					
HLA-A*01	:01	1	6	14	9	VATLYCVH	łQ	Consensus	(ann/smm)	70.0	30975.41	7
2	282195.4	15	68	-	-	-	-					
HLA-A*01	:01	1	9	17	9	LYCVHQRI	[D	Consensus	(ann/smm)	81.0	32972.64	8
3	491529.9	97	79	-	-	-	-					
sinu@ubu	intu:~/De	esktop\$]									

IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE 91 www.IEDB.org

IEDB tools API sample command – class II

sinu@ubuntu:~/Desktop\$ curl --data "method=recommended&sequence_text=%3Epeptide1%0AGHAHKVPRRLLKAARMSAPCLRA& allele=HLA-DRB1*01:01&email address=spaul@lji.org" http://tools-cluster-interface.iedb.org/tools api/mhcii/

allele	seq_num	start	end	peptide	method	percenti	ile_rank	comblib	_core	comblib	_score	comblib_	_ran
n mhaiinan	SIIII acti	notmboi	Smm_ati		siiii_ati	yn_rank i'nen menl	ini_aciyn		ini_atiyi	0	ini_acigi		net
ank	1_core	netmnc1	ipan_ics	9	netmnci	ipan_rank	¢.	sturnio	lo_core	sturnio	lo_score	sturnio	.o_r
HLA-DRB1	L*01:01	1	5	19	KVPRRLL	KAARMSAP	Consensu	s (comb	.lib./smr	n/nn)	3.49	RRLLKAAF	₹M 1
.15 -	19.23	RRLLKAA	RM	19	3.49	RRLLKAAF	RM	7.80	3.36	-	-	-	
HLA-DRB1	L*01:01	1	4	18	HKVPRRL	LKAARMSA	Consensu	s (comb	.lib./smr	n/nn)	3.72	RRLLKAAF	ΧΜ 1
.15 -	19.23	RRLLKAA	RM	20	3.72	RRLLKAAF	RM	7.30	2.91	-	-	-	
HLA-DRB1	1*01:01	1	6	20	VPRRLLK	AARMSAPC	Consensu	s (comb	.lib./smr	n/nn)	6.24	RRLLKAAF	ξ Μ 1
. 15	19.23	RRLLKAA	RM	20	3.72	RRLLKAAF	RM	11.40	6.24	-	-	-	
HLA-DRB1	L*01:01	1	3	17	AHKVPRR	LLKAARMS	Consensu	s (comb	.lib./smr	n/nn)	6.87	RRLLKAAF	₹M 1
.15 -	19.23	RRLLKAA	RM	35	6.87	RRLLKAAF	RM	8.80	4.22	-	-	-	
HLA-DRB1	L*01:01	1	2	16	HAHKVPR	RLLKAARM	Consensu	s (comb	.lib./smr	n/nn)	7.08	HAHKVPRF	₹L 0
.19 -	12.42	VPRRLLK/	AA	36	7.08	RRLLKAAF	RM	10.70	5.73	-	-	-	
HLA-DRB1	L*01:01	1	8	22	RRLLKAA	RMSAPCLR	Consensu	s (comb	.lib./smr	n/nn)	7.48	AARMSAPO	CL 0
.61 -	16.87	RRLLKAA	RM	38	7.48	AARMSAPO	CL	10.30	5.42	-	-	-	
HLA-DRB1	L*01:01	1	7	21	PRRLLKA	ARMSAPCL	Consensu	s (comb	.lib./smr	n/nn)	7.68	AARMSAPO	CL 0
.61 -	16.87	RRLLKAA	RM	39	7.68	RRLLKAAF	RM	13.20	7.47	-	-	-	
HLA-DRB1	L*01:01	1	9	23	RLLKAAR	MSAPCLRA	Consensu	s (comb	.lib./smr	n/nn)	13.70	AARMSAPO	CL 0
.61 -	16.87	AARMSAP	CL	73	13.70	AARMSAPO	CL	10.80	5.80	-	-	-	
HLA-DRB1	L*01:01	1	1	15	GHAHKVP	RRLLKAAR	Consensu	s (comb	.lib./smr	n/nn)	55.55	HAHKVPRF	۲L 0
.19	12.42	AHKVPRRI	L	824	55.55	AHKVPRRL	L	523.40	57.47	-	-	-	

Standalone version

Standalone version

Can be downloaded from "Download" tab Home Help Example Refer nce Download Contact

Scoring matrices of SMM and SMMPMBEC - Download

To download the dataset in tar.gz format: Download

Dataset used for retraining the IEDB class I binding prediction tools.

- Description of the dataset: The dataset is largely identical to that of Kim et al (2014), described above, but includes additional data that was not publicly as
- Date of the dataset generation: 2013
- Details on the dataset generation: The dataset was compiled from three sources: the IEDB, the Sette lab, and the Buus lab. If a peptide/allele combination
- Data format: Compressed text file containing binding data.
- Dataset availability: binding data 2013.zip

MHC-I binding predictions - Download

The MHC_I binding tool contains a collection of following peptide binding prediction methods for Major Histocompatibility Complex (MHC) class I molecules.

- ann
- smm
- smmpmbec
- comblib sidney2008
- consensus netmhcpan
- pickpocket
- netmhccons

License Agreements

By downloading the standalone tool, you are consenting to be bound by and become a party as the "Licensee" for the use of NetMHC 3.0". Also you are consenting the terms and conditions of the Non-Profit Open Software License ("Non-Profit OSL") version 3.0

Please read following two agreements before proceeding. If you do not agree to all of the terms of these two agreements, you must not click the download button, not install the product nor use the product, and you do not become a LICENSEE under these agreements.

ACADEMIC SOFTWARE LICENSE AGREEMENT FOR END-USERS AT PUBLICLY FUNDED ACADEMIC, EDUCATION OR RESEARCH INSTITUTIONS FOR THE USE OF NetMHC 3.0 By downloading the Software you are consenting to be bound by and become a party to this agreement as the "Licensee". If you do not agree to all of the terms of this agreement, you must not click the Acceptance بالمتحاد بالانتيار وتكريب كالمراجع والتعادي وتتعارب

This Non-Profit Open Software License ("Non-Profit OSL") version 3.0 (the "Licen

se") applies to any original work of authorship (the "Original Work") whose owne

r (the "Licensor") has placed the following licensing notice adjacent to

To download the tools in tar.gz format: Agree and Download

To return to the main page: Decline

IEDB Tools Downloads

Complete Download: IEDB Analysis Resource Virtual Machine Image

For users that would like to run the entire analysis resource locally, a virtual machine image file is available with a paid commercial license. The image is kept in sync with the current version of the IEDB Analysis Resource and is updated on a six month cycle. Please contact us for details on licensing options.

Standalone Downloads

Many of the tools hosted on the IEDB-AR are available as command-line tools. They are freely available to academic users through an open source license. Please <u>contact us</u> to inquire about a commercial license or if you have any questions in general.

Linear B cell epitope predictor

This allows for scoring of amino acid residues using the 6 scale-based methods of the linear B cell epitope prediction tool.

Linear B cell epitope predictor

Standalone version

- Available for class I, class II & some other tools also.
- Runs on Linux (Can use Vmware or Virtualbox to create virtual machine to run Linux on Windows machines).

Advantages:

- No internet needed.
- Implement tools on your own machine.
- Large amount of data (genome scale).
- Repetitive analysis.
- Free for non-profit & academia.
- Available for industry at a nominal license fee.

Standalone version sample command – class I

sinu@ubuntu:~/tools/mhc_i\$./src/predict_binding.py IEDB_recommended HLA-A*02:01 9 test.fasta

allele seq_num _ic50 smm_ran	start end k comblik	length _sidney2	peptide method 008_score	<pre>percentile_rank a comblib_sidney200</pre>	nn_ic50	smm an_r
ank						
HLA-A*02:01	1 11	19	9 SGATWVD	LV Consensus	<pre>(ann/smm/comblib_sidney2008)</pre>	8.7
8066.17 2.9	1390.30472906	8.7	0.00050234258952	22 22 -	-	
HLA-A*02:01	1 6	14	9 FLEGVSG	AT Consensus	<pre>(ann/smm/comblib_sidney2008)</pre>	101
988.18 2.2	1742.24810171	10	0.00032210687912	28 17 -	-	
HLA-A*02:01	1 2	10	9 SNRDFLE	GV Consensus	(ann/smm/comblib sidney2008)	221
6517.03 22	9956.57569908	23	0.0001530382532	18 8.2 -		
HLA-A*02:01	1 12	20	9 GATWVDL	/L Consensus	<pre>(ann/smm/comblib sidney2008)</pre>	237
192.69 2.7	9486.58713289	23	0.0077481853277	5 80 -	-	
HLA-A*02:01	1 5	13	9 DFLEGVS	GA Consensus	<pre>(ann/smm/comblib_sidney2008)</pre>	272
9823.04 49	15852.9467196	27	0.0005862731433	53 25 -	-	
HLA-A*02:01	1 9	17	9 GVSGATW	/D Consensus	<pre>(ann/smm/comblib sidney2008)</pre>	333
3325.2 57	27996.9034762	33	0.0007081088136	94 28 -	-	
HLA-A*02:01	1 14	22	9 TWVDLVL	EG Consensus	<pre>(ann/smm/comblib_sidney2008)</pre>	342
5247.9 37	28914.121391	34	0.0008046370017	4 30 -	-	

sinu@ubuntu:~/tools/mhc_i\$./src/predict_binding.py IEDB_recommended HLA-A*02:01 9 test.fasta > result.txt

96 www.IEDB.org

Standalone version sample command – class II

sinu@ubuntu:~/tools/mhc_ii\$ python mhc_II_binding.py IEDB_recommended HLA-DRB1*03:01 test.fasta

allele seq_num	start	end	peptide	method	consensu	is_percenti	ile_ran	ık	comblib_	core	comblib_	scc
re comblib	rank	smm alig	gn core	smm alig	gn ic50	smm align	rank	nn align	core	nn align	ic50	nn
align rank	netmhcii	ipan core	9	netmhcii	ipan ic50) ne	etmhcii	pan rank	_	sturniol	o core	stī
rniolo score	sturniol	o rank			_			_			_	
HLA-DRB1*03:01	1	1	15	MSNRDFLE	EGVSGATW	Consensus	(SMM, NN	I,Sturnio	lo)	27.74	-	
FLEGVSGAT	9343.0	19.11	FLEGVSGA	λT	15398.6	72.13 -		-	-	FLEGVSGA	Т	-1.
2 27.74												
HLA-DRB1*03:01	1	2	16	SNRDFLEO	GVSGATWV	Consensus	(SMM, NN	I,Sturnio	lo)	27.74	-	
FLEGVSGAT	8986.0	18.32	FLEGVSGA	λT	13753.3	69.06 -		-	-	FLEGVSGA	Т	-1.
2 27.74												
HLA-DRB1*03:01	1	3	17	NRDFLEG\	/SGATWVD	Consensus	(SMM, NN	I,Sturnio	lo)	27.74	-	
FLEGVSGAT	9085.0	18.56	FLEGVSGA	λT	12966.4	67.52 -		-	-	FLEGVSGA	Т	-1.
2 27.74												
HLA-DRB1*03:01	1	4	18	RDFLEGVS	GATWVDL	Consensus	(SMM, NN	I,Sturnio	lo)	27.74	-	
FLEGVSGAT	8523.0	17.28	FLEGVSGA	λT	12159.0	65.84 -		-	-	FLEGVSGA	Т	-1.
2 27.74												
HLA-DRB1*03:01	1	5	19	DFLEGVS	GATWVDLV	Consensus	(SMM, NN	I,Sturnio	lo)	37.04	-	
FLEGVSGAT	18841.0	37.04	VSGATWVD)L	12588.1	66.77 -		-	-	FLEGVSGA	Т	-1.
2 27.74												
HLA-DRB1*03:01	1	6	20	FLEGVSG	ATWVDLVL	Consensus	(SMM, NN	I,Sturnio	lo)	36.26	-	
FLEGVSGAT	18363.0	36.26	VSGATWV)L	9927.8	60.7 -		-	-	FLEGVSGA	Т	-1.
2 27.74												

• Detailed instructions available in README file

Summary

- Comparison of class I & II tools
- How the tool works
- How to use the tool web version
- Recommendations method, thresholds
- Prediction of promiscuous binders
- "7-allele" method
- TepiTool
- Other versions
 - API/RESTful interface
 - Standalone

