
Analysis Tools

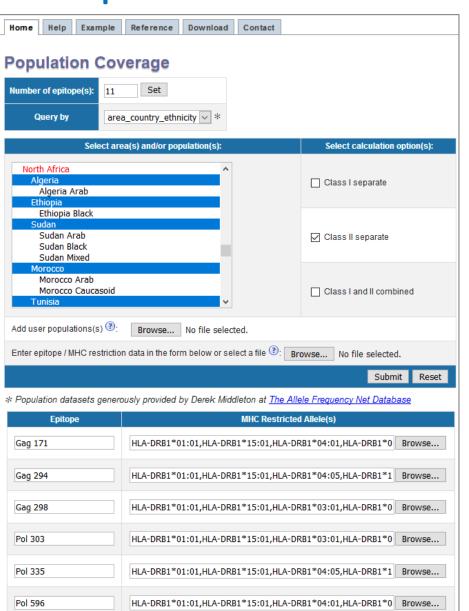
tools.iedb.org

Presented by: Alessandro Sette, PI

Analysis tools with broad applications

http://tools.iedb.org/main/analysis-tools/

Population Coverage

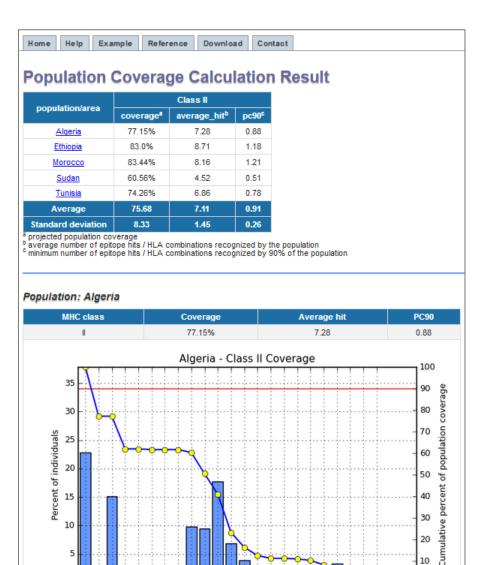

http://tools.iedb.org/population/

- Calculates the fraction of individuals projected to bind and/or respond to a given set of epitopes with defined reactivity
- Based on
 - Epitope known HLA binding/restrictions
 - HLA genotypic frequencies
- HLA genotypic frequencies vary in different ethnicities
 - (http://allelefrequencies.net)

Population Coverage - example

http://tools.iedb.org/population/

For a set of 11 MHC class II restricted epitopes with promiscuous HLA binding, what is the population coverage in different North African populations?



Population Coverage example

http://tools.iedb.org/population/

Results:

- Summarized in table format
- Plotted per population

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Number of epitope hits/HLA combination recognized

Back to top

20

10

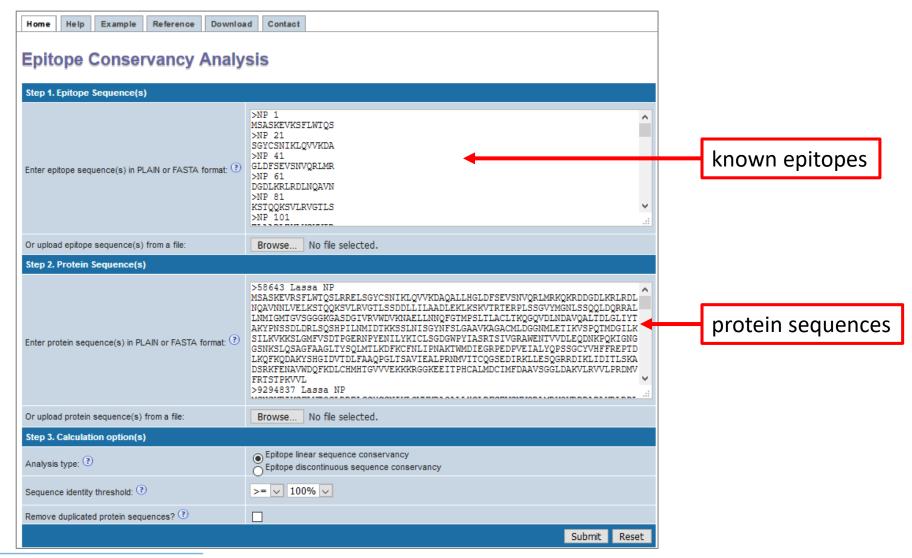
2019 IEDB User Workshop

5

Population: Ethiopia

View chart data in table format

View coverage of individual epitope in Algeria


Epitope Conservancy Analysis

- Calculates the degrees of conservancy of one or more epitopes, within a given set of protein sequences
- Adjustable sequence identity threshold
- "Degree of conservation" = the fraction of protein sequences containing the epitope at a given identity level

· ·

Epitope Conservancy- example

http://tools.iedb.org/conservancy/

Epitope Conservancy- example

http://tools.iedb.org/conservancy/

Home I	lelp Exampl	e Reference Do	wnload Con	tact			
	oe Cons	ervancy A	nalysis	Result	1		
pitope \$	Epitope pame	Epitope sequence	Epitope length \$	Percent of protein sequence matches at identity <= 100%	Minimum ¢	Maximum ¢	View details
22	NP 421	LKQFKQDAKYSHGID	15	98.44% (63/64)	93.33%	100.00%	<u>Go</u>
20	NP 381	LDPNAKTWMDIEGRP	15	68.75% (44/64)	80.00%	100.00%	Go
17	NP 321	ASRTSITGRAWENTV	15	67.19% (43/64)	86.67%	100.00%	<u>Go</u>
21	NP 401	IALYQPSSGCYIHFF	15	65.62% (42/64)	86.67%	100.00%	Go
25	NP 481	KLIDIALSKTDSRKY	15	54.69% (35/64)	66.67%	100.00%	Go
26	NP 501	DQYKDLCHMHTGVVV	15	54.69% (35/64)	86.67%	100.00%	<u>Go</u>
19	NP 361	FTAGLTYSQLMTLKD	15	50.00% (32/64)	80.00%	100.00%	Go
24	NP 461	TCQGSDDIRKLLESQ	15	50.00% (32/64)	80.00%	100.00%	Go
23	NP 441	AAQPGLTSAVIEALP	15	34.38% (22/64)	86.67%	100.00%	Go
18	NP 341	DGKPQKAGSNNSNKS	15	28.12% (18/64)	60.00%	100.00%	Go
2	NP 21	SGYCSNIKLQVVKDA	15	17.19% (11/64)	26.67%	100.00%	Go
10	NP 181	SLTLACLTKQGQVDL	15	17.19% (11/64)	26.67%	100.00%	Go
11	NP 201	ALTDLGLIYTAKYPN	15	17.19% (11/64)	26.67%	100.00%	Go
3	NP 41	GLDFSEVSNVQRLMR	15	15.62% (10/64)	26.67%	100.00%	Go
13	NP 241	ISGYNFSLGAAVKAG	15	15.62% (10/64)	26.67%	100.00%	Go
16	NP 301	NPYENTI.YKICI.SGD	15	14.06% (9/64)	20 00%	100 00%	Co

Epitope Conservancy- example

http://tools.iedb.org/conservancy/

Show rec	ords with identity	>= ▼	70% ▼	Show records	
Protein #	Protein name		Positions	Protein sub-sequence(s)	Identity
1	58643 Lassa N	NP	401-415	IALYQPSSGCYVHFF	93.33%
2	9294837 Lassa	NP	400-414	IALFQPSSGCYIHFF	93.33%
3	9294840 Lassa	NP	400-414	IALYQPMSGCYIHFF	93.33%
4	9294844 Lassa	NP	82-96	IALYQPMSGCYIHFF	93.33%
5	9294846 Lassa	NP	82-96	IALYQPMSGCYIHFF	93.33%
6	9294848 Lassa	NP	82-96	IALYQPMSGCYIHFF	93.33%
7	9294850 Lassa	NP	82-96	IALYQPISGCYIHFF	93.33%
8	9294852 Lassa	NP	82-96	IALYQPISGCYIHFF	93.33%
9	9294854 Lassa	NP	82-96	IAIYQPMSGCYIHFF	86.67%
10	9294856 Lassa	NP	82-96	IALYQPMSGCYIHFF	93.33%
11	9294858 Lassa	NP	82-96	IALYQPNSGCYIHFF	93.33%
12	9294860 Lassa	NP	82-96	IALYQPSSGCYIHFF	100.00%
13	02048621 2662	NIP	82-96	IALYOPSSGCYIHFF	100.00%

Epitope Cluster Analysis Tool

- Analyzes how many epitopes in a set have significant sequence homology
- Groups epitopes into clusters based on having sequence identity greater than a specified threshold
- Three different clustering approaches are implemented
- Enables diverse applications such as generating epitope pools, and understanding cross-reactivity

Clustering approaches

1. All connected peptides in a cluster

- All peptides homologous to specified threshold are clustered together (for example, 70%)
- Drawback: members of the cluster might be related by levels of homology lower than threshold (for example, 70%)

2. Fully interconnected clusters (cliques)

- All peptides in a cluster share homology higher than the given threshold
- Drawback: One peptide can be a part of multiple cliques

3. Cluster-break method (recommended method)

- An extension of first approach
- A cluster is broken down into subclusters based on consensus sequence computations

Here is a set of sequences...as an example

TRAPPER

CLAPPER

SNAPPER

RAPPERTIME

DAYTIME

ANYTIME

PERTIME

TIMELESS

TIMER

TWICE

NICEDAY

ICE

CEDAR

HAPPYDAYS

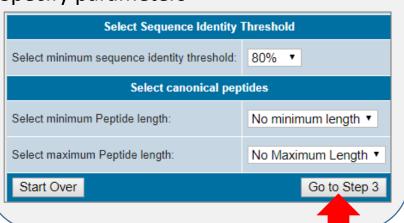
HIPPY

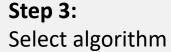
PAYDAY

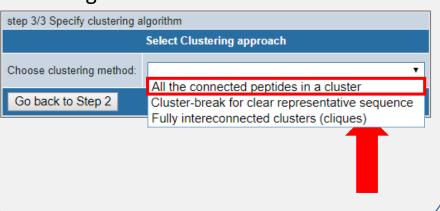
CALAMARI

AMA

ISQAVHAAHAEINEAGR


http://tools.iedb.org/cluster/


Step 1:


Enter epitope sequences

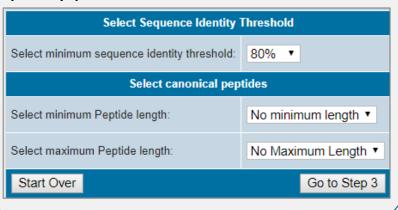
Step 2:Specify parameters

13

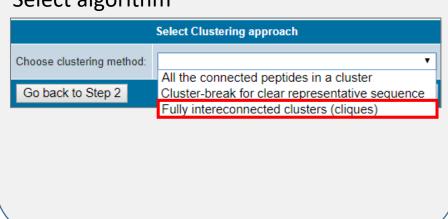
http://tools.iedb.org/cluster/

Show Table	<u>Graphical V</u>	<u>isualization</u>			
Cluster Number	Peptide Number	Alignment	Position	Description	Peptide
1	Consensus	TRAPPERTIMEXESS	-	-	-
1	1	TRAPPER	1	seq1	TRAPPER
1	2	-RAPPERTIME	2	seq4	RAPPERTIME
1	3	DAYTIME	5	seq5	DAYTIME
1	4	ANYTIME	5	seq6	ANYTIME
1	5	PERTIME	5	seq7	PERTIME
1	6	TIMELESS	8	seq8	TIMELESS
1	7	TIMER	8	seq9	TIMER
2	Consensus	TXICEDAX	-	-	-
2	1	TWICE	1	seq10	TWICE
2	2	-NICEDAY	2	seq11	NICEDAY
2	3	ICE	3	seq12	ICE
2	4	CEDAR	4	seq13	CEDAR
3	Consensus	HXPPYDAYS	-	-	-
3	1	HAPPYDAYS	1	seq14	HAPPYDAYS
3	2	HIPPY	1	seq15	HIPPY
3	3	PAYDAY-	3	seq16	PAYDAY
4	Consensus	CALAMARI	-	-	-
4	1	CALAMARI	1	seq17	CALAMARI
4	2	AMA	4	seq18	AMA
5	Singleton	CLAPPER	-	seq2	CLAPPER
6	Singleton	SNAPPER	-	seq3	SNAPPER
7	Singleton	ISQAVHAAHAEINEAGR	_	seq19	ISQAVHAAHAEINEA

TRAPPER and TIMELESS do not have 80% homology but are in the same cluster because each have 80% homology to other members of the cluster


http://tools.iedb.org/cluster/

Step 1:


Enter epitope sequences

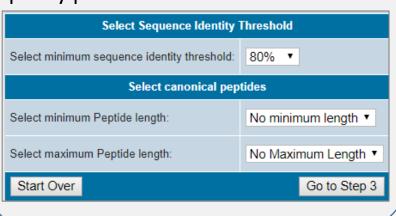
Step 2: Specify parameters

Step 3: Select algorithm

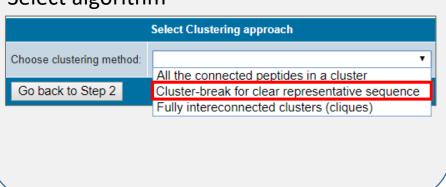
http://tools.iedb.org/cluster/

Clique Number	Peptide Number	Alignment	Position	Description	Peptide
1	Consensus	RAPPERTIMER	-	-	-
1	1	RAPPERTIME-	1	seq4	RAPPERTIME <
1	2	PERTIME-	4	seq7	PERTIME
1	3	TIMER	7	seq9	TIMER
2	Consensus	NICEDAX	-	-	-
2	1	NICEDAY	1	seq11	NICEDAY
2	2	CEDAR	3	seq13	CEDAR
3	Consensus	NICEDAY	-	-	-
3	1	NICEDAY	1	seq11	NICEDAY
3	2	-ICE	2	seq12	ICE
4	Consensus	TRAPPERTIME	-	-	-
4	1	TRAPPER	1	seq1	TRAPPER
4	2	-RAPPERTIME	2	seq4	RAPPERTIME <
5	Consensus	CALAMARI	-	-	-
5	1	CALAMARI	1	seq17	CALAMARI
5	2	AMA	4	seq18	AMA
6	Consensus	DAYTIMER	-	-	-
6	1	DAYTIME-	1	seq5	DAYTIME
6	2	TIMER	4	seq9	TIMER
7	Consensus	TIMEXESS	-	-	-
7	1	TIMELESS	1	seq8	TIMELESS
7	2	TIMER	1	seq9	TIMER
8	Consensus	ANYTIMER	-	-	-
8	1	ANYTIME-	1	seq6	ANYTIME
8	2	TIMER	4	seq9	TIMER
9	Consensus	TWICE	-	-	-
9	1	TWICE	1	seq10	TWICE
		7.00		40	7.00

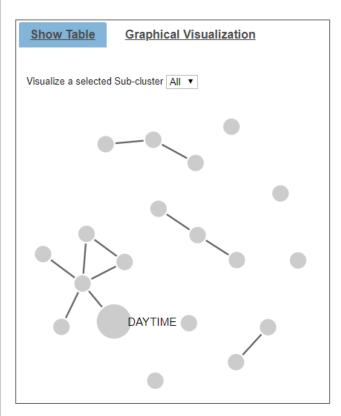
RAPPERTIME (and several others) appear in multiple clusters because they have the specified level of homology to the other members of the clique


Cluster-break method is the recommended method

http://tools.iedb.org/cluster/


Step 1:Enter epitope sequences

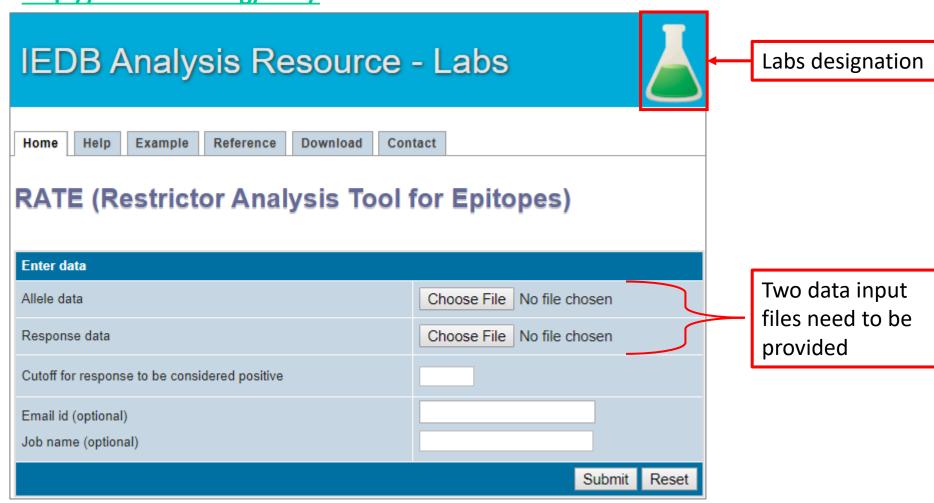
Step 2: Specify parameters



Step 3: Select algorithm

http://tools.iedb.org/cluster/

Cluster.Sub-Cluster Number	Peptide Number	Alignment	Position	Description	Peptide
1.1	Consensus	RAPXXXTIMEXESS	-	-	-
1.1	1	RAPPERTIME	1	seq4	RAPPERTIME
1.1	2	DAYTIME	4	seq5	DAYTIME
1.1	3	ANYTIME	4	seq6	ANYTIME
1.1	4	PERTIME	4	seq7	PERTIME
1.1	5	TIMELESS	7	seq8	TIMELESS
1.1	6	TIMER	7	seq9	TIMER
1.2	Singleton	TRAPPER	-	seq1	TRAPPER
2.1	Consensus	NICEDAX	-	-	-
2.1	1	NICEDAY	1	seq11	NICEDAY
2.1	2	-ICE	2	seq12	ICE
2.1	3	CEDAR	3	seq13	CEDAR
2.2	Singleton	TWICE	-	seq10	TWICE
3.1	Consensus	HXPPYDAYS	-	-	-
3.1	1	HAPPYDAYS	1	seq14	HAPPYDAYS
3.1	2	HIPPY	1	seq15	HIPPY
3.1	3	PAYDAY-	3	seq16	PAYDAY
4.1	Consensus	CALAMARI	-	-	-
4.1	1	CALAMARI	1	seq17	CALAMARI
4.1	2	AMA	4	seq18	AMA
5.1	Singleton	CLAPPER	-	seq2	CLAPPER
6.1	Singleton	SNAPPER	-	seq3	SNAPPER
7.1	Singleton	ISQAVHAAHAEINEAGR	-	seq19	ISQAVHAAHAEIN



Restrictor Analysis Tool for Epitopes (RATE)

- Automated method to infer HLA restriction of a given epitope set, from immune response data of HLA typed subjects
- The method is based on computing the frequency of all alleles expressed in the population studied in donors who had an immune response to each given epitope
- Compare those frequencies in donors that did not have a response to the same epitope

RATE

http://tools.iedb.org/rate/

RATE – Input: Allele data

- Data format = tab separated in plain text file
- Sample data shown here 12 class II alleles of 6 loci for each donor are listed in separate columns

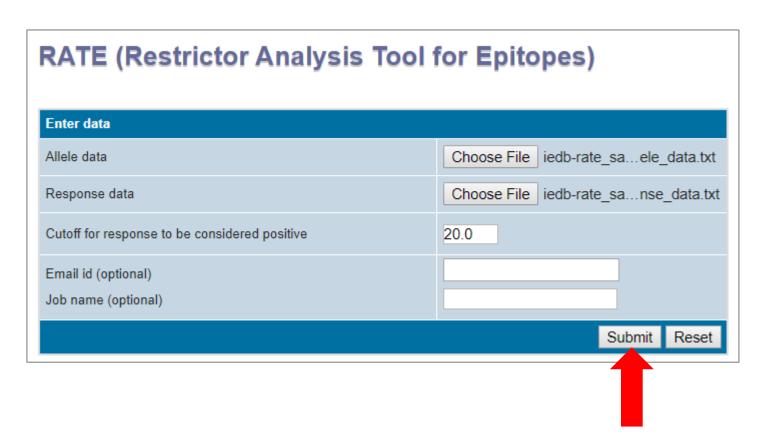
File Edit Format	View Help								
Donor-1 Donor-2	Donor-3 Donor-4	Donor-5 Donor-6	Donor-7 Donor-8	Donor-9 Donor-	-10 D	onor-11	Donor-12	Donor-	13
ORB1*03:01	DRB1*11:01	DRB1*01:01	DRB1*07:01	DRB1*12:01	DRB1*11:0	2 DRB1*08	:04 DRB	1*11:01	DRB
ORB1*07:01	DRB1*15:03	DRB1*07:01	DRB1*15:03	DRB1*15:03	DRB1*13:0	2 DRB1*15	:02 DRB	1*13:02	DRB
ORB3*02:02	DRB3*02:02	DRB3*02:02	DRB4*01:03	DRB3*01:01	DRB3*02:0	2 DRB5*01	:02 DRB	3*02:02	DRB
ORB4*01:03	DRB5*01:01	DRB4*01:03	DRB5*01:01	DRB5*01:01	DRB3*03:0	1 n/a	DRB3*03:01	DRB3*0	2:02
OQA1*02:01	DQA1*01:02	DQA1*02:01	DQA1*01:02	DQA1*01:01	DQA1*01:0	2 DQA1*01	:03 DQA	1*01:02	DQA
OQA1*05:01	DQA1*05:05	DQA1*05:01	DQA1*02:01	DQA1*01:02	DQA1*05:0	5 DQA1*04	:01 DQA	1*05:05	DQA
QB1*02:01	DQB1*06:02	DQB1*03:02	DQB1*02:02	DQB1*05:01	DQB1*03:1	9 DQB1*03	:19 DQB	1*06:09	DQB
QB1*05:03	DQB1*06:02	DQB1*03:02	DQB1*06:02	DQB1*06:02	DQB1*06:0	9 DQB1*06	:01 DQB	1*06:09	DQB
PA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:03	DPA1*01:0	3 DPA1*02	:01 DPA	1*01:03	DPA
PA1*02:01	DPA1*03:01	DPA1*02:01	DPA1*02:01	DPA1*03:01	DPA1*01:0	3 DPA1*02	:02 DPA	1*01:03	DPA
PB1*13:01	DPB1*03:01	DPB1*17:01	DPB1*01:01	DPB1*18:01	DPB1*34:0	1 DPB1*01	:01 DPB	1*02:01	DPE
PB1*17:01	DPB1*105:01	DPB1*01:01	DPB1*02:01	DPB1*105:01	DPB1*02:0	1 DPB1*13	:01 DPB	1*105:01	DPE

RATE – Input: Response data

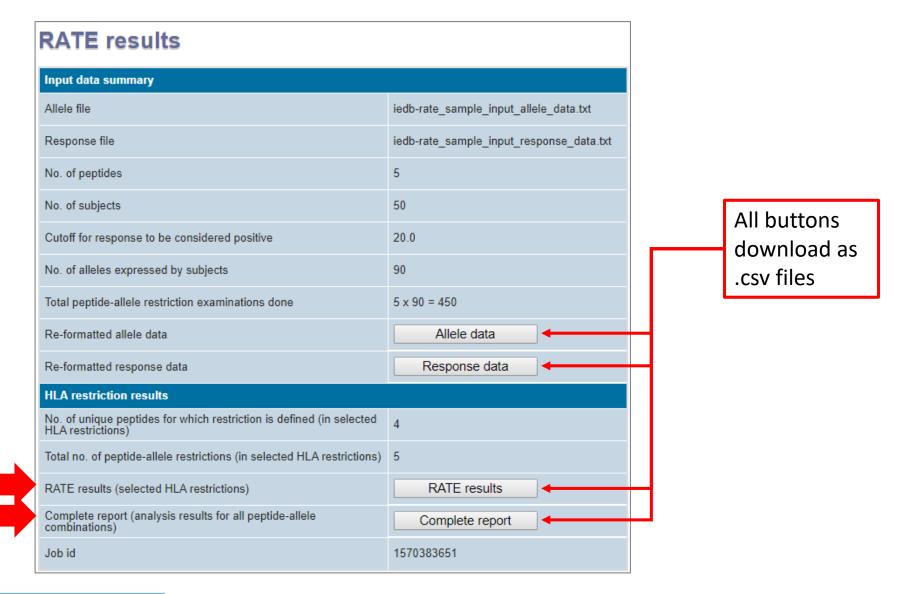
- Data format = tab separated in plain text file
- The response data (here SFC values) for each epitope in each of the donors are provided

iec	db-rate_sa	mple_input_	response_data - N	lotepad									
File	Edit For	mat View	Help										
Pepti	ide #	Pept	tide_ID	Peptide	Seq	Donor-1	Donor-2	Donor-3	Donor-4	Donor-5	Donor-6	Donor-7	Done
1	353	1.0365	GINTIPI	AINEAEYV	98	0	0	0	0	0	0	40	0
2	353	1.0367	AAFQAAH	IARFVAAAA	68	0	50	0	0	0	0	0	0
3	353	1.0514	AAVVRFQ	EAANKQKQ	0	55	0	0	0	0	0	0	0
4	353	1.0494	ELFVAAY	VPYVAWLV	0	0	0	0	n/a	n/a	0	0	0
5	353	1.037	AAGTYVA	ADAAAAST	0	0	83	0	0	0	0	0	0

RATE – how it works


- Restrictions are determined based on
 - "Odds Ratio" and significance estimated using Fisher's exact test.

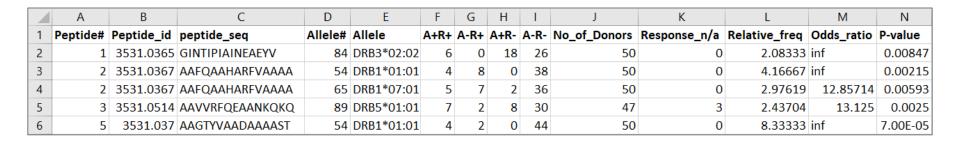
OR =
$$\frac{(A^{+}R^{+}) \times (A^{-}R^{-})}{(A^{-}R^{+}) \times (A^{+}R^{-})}$$


 "Relative Frequency", a parameter estimated by the tool based on the frequency of alleles and donors responded

$$RF = \frac{A^{+}R^{+} / (A^{+}R^{+} + A^{+}R^{-})}{(A^{+}R^{+} + A^{-}R^{+}) / Total donors}$$

RATE - example

RATE - example


RATE - results (complete report)

• All epitopes

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N
1	Peptide#	Peptide_id	peptide_seq	Allele#	Allele	A+R+	A-R+	A+R-	A-R-	No_of_Donors	Response_n/a	Relative_freq	Odds_ratio	P-value
2	1	3531.037	GINTIPIAINEAEYV	1	DPA1*01:03	5	1	34	10	50	0	1.06838	1.47059	1
3	2	3531.037	AAFQAAHARFVAAAA	1	DPA1*01:03	10	2	29	9	50	0	1.06838	1.55172	1
4	3	3531.051	AAVVRFQEAANKQKQ	1	DPA1*01:03	8	1	28	10	47	3	1.16049	2.85714	0.6631
5	4	3531.049	ELFVAAYVPYVAWLV	1	DPA1*01:03	1	0	36	11	48	2	1.2973	inf	1
6	5	3531.037	AAGTYVAADAAAAST	1	DPA1*01:03	5	1	34	10	50	0	1.06838	1.47059	1
7	1	3531.037	GINTIPIAINEAEYV	2	DPA1*01:04	0	6	1	43	50	0	0	0	1
8	2	3531.037	AAFQAAHARFVAAAA	2	DPA1*01:04	0	12	1	37	50	0	0	0	1
9	3	3531.051	AAVVRFQEAANKQKQ	2	DPA1*01:04	0	9	1	37	47	3	0	0	1
10	4	3531.049	ELFVAAYVPYVAWLV	2	DPA1*01:04	0	1	1	46	48	2	0	0	1
11	5	3531.037	AAGTYVAADAAAAST	2	DPA1*01:04	0	6	1	43	50	0	0	0	1
12	1	3531.037	GINTIPIAINEAEYV	3	DPA1*02:01	3	3	20	24	50	0	1.08696	1.2	1
13	2	3531.037	AAFQAAHARFVAAAA	3	DPA1*02:01	5	7	18	20	50	0	0.9058	0.79365	1
14	3	3531.051	AAVVRFQEAANKQKQ	3	DPA1*02:01	3	6	18	20	47	3	0.74603	0.55556	0.7111
15	4	3531.049	ELFVAAYVPYVAWLV	3	DPA1*02:01	0	1	23	24	48	2	0	0	1
16	5	3531.037	AAGTYVAADAAAAST	3	DPA1*02:01	2	4	21	23	50	0	0.72464	0.54762	0.674
17	1	3531.037	GINTIPIAINEAEYV	4	DPA1*02:02	1	5	10	34	50	0	0.75758	0.68	. 1
18	2	3531.037	AAFQAAHARFVAAAA	4	DPA1*02:02	2	10	9	29	50	0	0.75758	0.64444	1
19	3	3531.051	AAVVRFQEAANKQKQ	4	DPA1*02:02	1	8	10	28	47	3	0.47475	0.35	0.6631
20	4	3531.049	ELFVAAYVPYVAWLV	4	DPA1*02:02	0	1	11	36	48	2	0	0	1
21	5	3531.037	AAGTYVAADAAAAST	4	DPA1*02:02	1	5	10	34	50	0	0.75758	0.68	. 1
22	1	3531.037	GINTIPIAINEAEYV	5	DPA1*03:01	0	6	9	35	50	0	0	0	0.5756
23	2	3531.037	AAFQAAHARFVAAAA	5	DPA1*03:01	2	10	7	31	50	0	0.92593	0.88571	. 1
24	3	3531.051	AAVVRFQEAANKQKQ	5	DPA1*03:01	2	7	6	32	47	3	1.30556	1.52381	0.6388
25	4	3531.049	ELFVAAYVPYVAWLV	5	DPA1*03:01	0	1	8	39	48	2	0	0	1
26	5	3531.037	AAGTYVAADAAAAST	5	DPA1*03:01	1	5	8	36	50	0	0.92593	0.9	1
27	1	3531.037	GINTIPIAINEAEYV	6	DPA1*04:01	1	5	0	44	50	0	8.33333	inf	0.12
28	2	3531.037	AAFQAAHARFVAAAA	6	DPA1*04:01	0	12	1	37	50	0	0	0	1
29	3	3531.051	AAVVRFQEAANKQKQ	6	DPA1*04:01	0	9	1	37	47	3	0	0	1
30	4	3531.049	ELFVAAYVPYVAWLV	6	DPA1*04:01	0	1	1	46	48	2	0	0	1

RATE - results (selected HLA restrictions)

 Epitope-allele combinations with RF ≥ 1.3 and p-value < 0.01 are reported (not Bonferroni corrected)

Deimmunization

Overview T Cell Tools B Cell Tools Analysis Tools Tools-API Usage Download Datasets Contribute Tools References

T Cell Epitopes - Immunogenicity Prediction
This tool predicts the relative ability of a peptide/MHC complex to elicit an immune response.

T cell class I pMHC immunogenicity predictor
This tool uses amino acid properties as well as their position within the peptide to predict the immunogenicity of a class I peptide MHC (pMHC) complex.

Deimmunization:

The deimmunization tool is attempt to identify immunodominant regions in a given therapeutically important protein, and suggest amino-acid substitutions that create non-immunogenic versions of the proteins. So we have opted a two steps process; 1) In the first step, the deimmunization tool will list all the immunogenic regions or peptides based on selected threshold. These peptides will be generated from the protein with 15mer window size and 10mer overlap. 2) In the second step, the user can select one or more peptides listed in the results and final result window will display the non-immunogenic substitution of each selected peptides. The default threshold is 8.5 (which is difference in the median of percentile rank from 26 reference alleles set for MHC class II). In the final result window, the tools will also take care of the fact that non-immunogenic substitution in the immunogenic peptides, should not create new immunogenic site in the neighboring peptides. Therefore, the result window will also display the effect of substitution on the neighboring peptides.

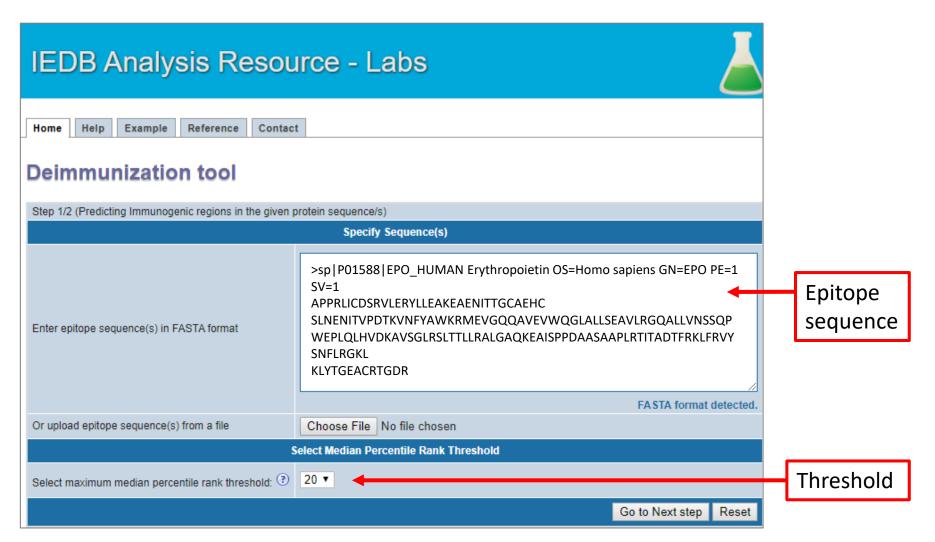
CD4 T cell immunogenicity prediction:

The server is developed to predict the allele independent CD4 T cell immunogenicity at population level. User can predict the T cell immunogenicity using 7-allele method (Paul et. al. 2015), immunogenicity method and combined method (IEDB recommended). The combined method predicts the final score that combines the predictions from 7-allele method and immunogenicity method.

Deimmunization - background

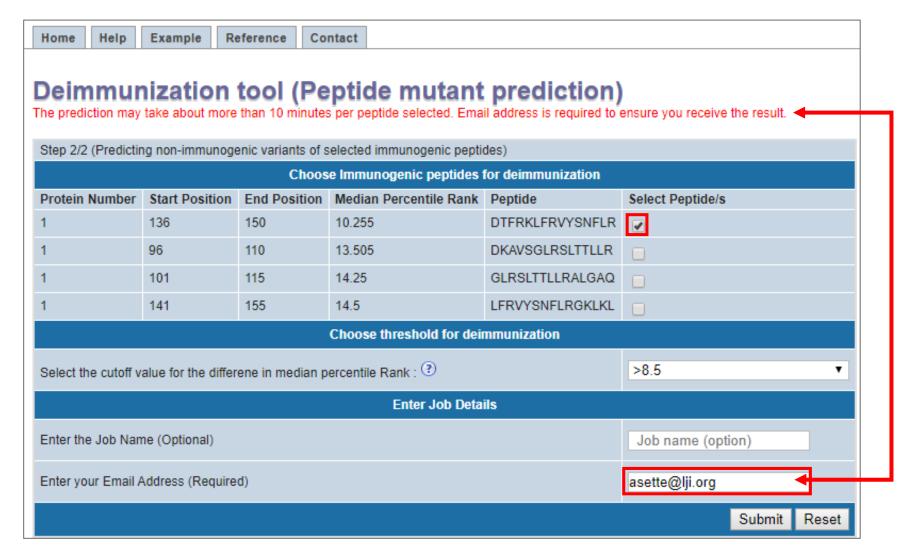
- Wild type and engineered proteins are widely used as drugs
- Immunogenicity of protein drugs is associated with serious potency and safety issues
- A potential approach to reducing immunogenicity is based on removal of T cell epitopes (de-immunization)

Deimmunization - approach


- Generate overlapping peptides from protein sequence
- Predict HLA class II binding binding regions

DTFRKLFRVYSNFLR	136-150	6.08	
LLEAKEAENITTGCA	16-30	21.76	
VLERYLLEAKEAENI	11-25	23.46	
ICDSRVLERYLLEAK	6-20	60.39	
APPRLICDSRVLERY	1-15	38.89	

- Suggest amino acid substitutions that are predicted to decrease binding
 - Also consider the effect of substitutions on neighboring peptides


Deimmunization - example

http://tools.iedb.org/deimmunization/

Deimmunization - example

http://tools.iedb.org/deimmunization/

Deimmunization Score

Immunogenicity for Neighboring peptide (1)	Immunogenicity for Neighboring peptide (2)	Score
Absent	Absent	1
Absent	Reduced	2
Reduced	Reduced	3
Absent	Neutral	4
Reduced	Neutral	5
Neutral	Neutral	6
Absent	Increased	7
Reduced	Increased	8
Neutral	Increased	9
Increased	Increased	10

Deimmunization - example

	Α	В	С	D	Е	F	G	Н	I	J	K	
								C terminal	C terminal	N terminal	N terminal	
	Protein		Peptide	Start	End	Median	Median	Neighbor 1	Neighbor 2	Neighbor 1	Neighbor 2	Deimmunization
1	Number	Peptide	ID	Position	Position	Percentile Rank	Difference	(Median)	(Median)	(Median)	(Median)	Score
2	1	DTFRKLFRVYSNFLR	wild	136	150	10.255	0	14.5	49.75	47	44.25	NA
3	1	DTFRKLFRVYSNFDR	L149D	136	150	32	21.745	41	68.5	NA	NA	3
4	1	DTFRKLFRVYSNFGR	L149G	136	150	27.5	17.245	31.5	68.75	NA	NA	3
5	1	DTFRKEFRVYSNFLR	L141E	136	150	26.5	16.245	26.5	NA	60.75	NA	3
6	1	DTFRKPFRVYSNFLR	L141P	136	150	26.35	16.095	26.5	NA	52.5	NA	3
7	1	DTFRKQFRVYSNFLR	L141Q	136	150	26	15.745	25.5	NA	53.25	NA	3
8	1	DTFRKLFRVYSNFNR	L149N	136	150	26	15.745	21.75	61.75	NA	NA	3
9	1	DTFRKLGRVYSNFLR	F142G	136	150	25.075	14.82	31	NA	50.75	NA	3
10	1	DTFRKLFDVYSNFLR	R143D	136	150	24.75	14.495	35.5	NA	49.25	NA	3
11	1	DTFRKKFRVYSNFLR	L141K	136	150	24.525	14.27	23	NA	59	NA	3
12	1	DTFRKLFRVYSNFCR	L149C	136	150	24.25	13.995	36	64	NA	NA	3
13	1	DTFRKCFRVYSNFLR	L141C	136	150	23.85	13.595	23.5	NA	73	NA	3
14	1	DTFRKLFRVYSCFLR	N147C	136	150	23.75	13.495	39.75	50	NA	NA	3
15	1	DTFRKDFRVYSNFLR	L141D	136	150	23.5	13.245	27.5	NA	62.5	NA	3
16	1	DTFRKGFRVYSNFLR	L141G	136	150	23.5	13.245	27	NA	57.5	NA	3
17	1	DTFRKLFRVYSNFKR	L149K	136	150	23.5	13.245	28	59	NA	NA	3
18	1	DTFRKLFRVYSNFER	L149E	136	150	22.75	12.495	34	62	NA	NA	3
19	1	DTFRKLERVYSNFLR	F142E	136	150	22.7	12.445	31	NA	48	NA	3
20	1	DTFRKLCRVYSNFLR	F142C	136	150	22.4	12.145	31	NA	50.25	NA	3
21	1	NTEDVITOV/VCNIELD	E1//OT	126	150	22 175	11 02	20	NA	10 75	NΛ	2

Analysis tools recap

 Help to examine existing sets of epitopes and gain new knowledge across a broad array of applications

Population Coverage

Analyze T cell epitopes with known HLA restriction that are recognized in a population based on HLA frequencies

Conservancy

Investigate epitope conservancy across different protein sequences.

Cluster

Cluster epitopes on the basis of homology

RATE

(Restrictor Analysis)

Infer HLA restrictions for epitopes of T cell response frequency in HLA typed subjects

Deimmunization

Identify immunodominant regions in a given protein, and suggest amino-acid substitutions that create non-immunogenic versions of the protein.