

Cancer Epitope Database and Analysis Resource (CEDAR)

Presented by: Zeynep Koşaloğlu-Yalçın, Instructor

Cancer Antigens

Coulie et al, Nat Rev Cancer. 2014 Feb

Motivation for the CEDAR Project

IMPORTANCE

- Cancer epitopes play a key role in cancer immunology and immunotherapy
- They are important in understanding the biological mechanisms associated with treatment efficacy and developing more effective therapeutic approaches

COMMUNITY NEED

- Several resources attempted to catalog cancer epitopes (e.g. TANTIGEN, CAPED, NEPdb, dbPepNEO, etc.)
 - Existing resources do not capture all epitope data in a granular fashion linked to the biological, immunological, and clinical contexts
 - All resources only provide limited computational prediction and analysis tools

We developed The Cancer Epitope Database and Analysis Resource to fill these gaps

Motivation for the CEDAR Project

- IEDB hosts epitope data for
 - Allergy
 - Infectious diseases
 - Autoimmune diseases
 - Transplantation / Alloantigens
 - But <u>NOT</u> Cancer

We received funding from the NCI to develop a resource for cancer epitopes

Cancer Epitope Database and Analysis Resource (CEDAR)

Comprehensively cataloging all cancer epitope-related data linked to the biological, immunological, and clinical contexts

Computational epitope prediction and analysis tools providing researchers access to predictive strategies and objective evaluations of their performance

Specific Aims of the CEDAR Project

1) Establish the CEDAR database, ontology, and query and reporting functionality

2) Curate literature epitope data, relevant to cancer immunology

3) Provide a validated set of cancer epitope prediction and analysis tools

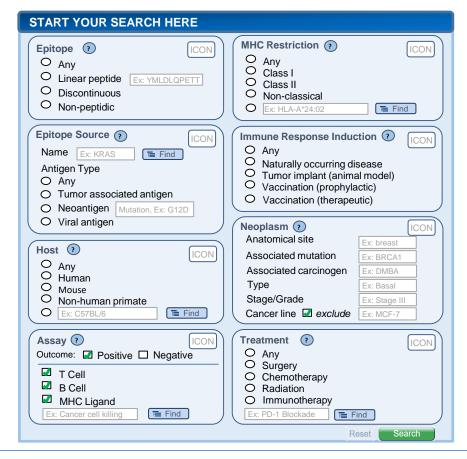
4) Implement a multifaceted outreach program to engage the cancer research community

Cancer Epitope Database and Analysis Resource

Help More CEDAR

Home Specialized Searches Analysis Resource

Welcome

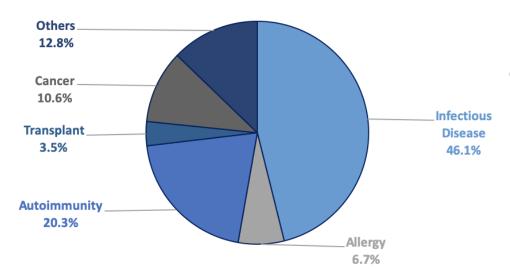

Workshop

The Cancer Epitope Database and Analysis Resource (CEDAR) is a freely available resource funded by NCI. It catalogs experimental data on antibody and T cell epitopes studied in humans, non-human primates, and other animal species in the context of cancer disease. CEDAR also hosts tools to assist in the prediction and analysis of cancer epitopes.

Learn More

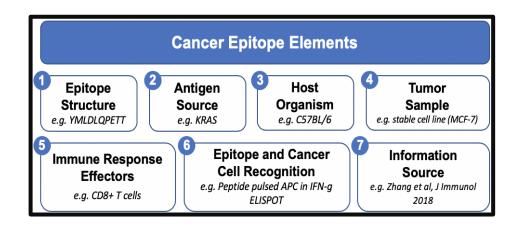
Upcoming Events & News

American Association 8 - 13 April for Cancer Research 2022 Introduction to PMID: **CEDAR Publication** 1234456 **CEDAR Database** PMID: Publication 7891011 **CEDAR Analysis** PMID: Resource Publication 1213141 **CEDAR User** 1 November

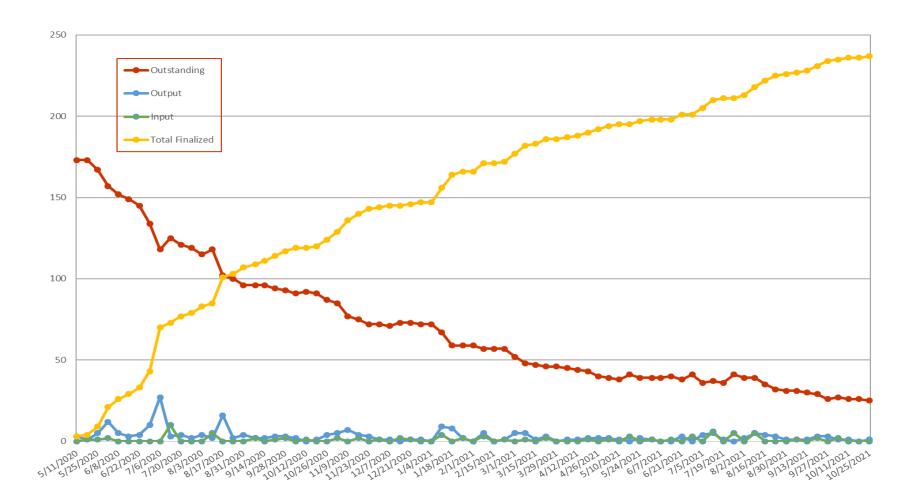

Provide Feedback | Help Request | Solutions Center | Tools Licensing Information

Supported by a grant from the National Cancer Institute, a component of the National Institutes of Health

2022


Last Updated: July 04, 2021

Curation of cancer-related epitope data



3,543 papers identified as cancer relevant

- internal que for curation: started with neoepitopes and prostate antigens
- Updated curation rules

During the last year we have started a pilot curation of neoepitope cancer papers

Provide web-implementations for published but hard to access cancer-epitope related tools in CEDAR

- Curate published tools and pipelines (functionality offered, frequency of re-use / citation, ease of implementation, licensing requirements)
- Prioritize tools to implement in CEDAR based on cost-benefit analysis
- Provide web-accessible implementations in the CEDAR Analysis Resource

Cell

Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction

Graphical Abstract

1. Global consortium to improve neoantigen prediction
Kristen K. Dang. ..., Ton N. Schumacher,
Pia Kvistborg, Nadine A. Defranoux

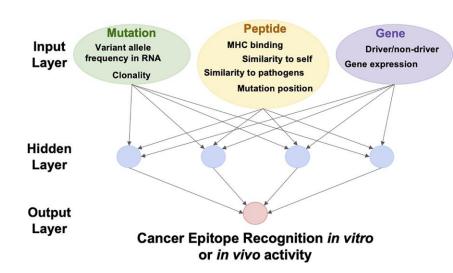
I,FTTF)

Resource

d-i-10 1039 (--t---- 24473

A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy

Marta Luksza¹, Nadeem Riaz^{2,3}, Vladimir Makarov^{3,4}, Vinod P. Balachandran^{5,6,7}, Matthew D. Hellmann^{7,8,9}, Alexander Solovyov^{10,11,12,13}, Natva A. Rizvi⁴, Taha Merghoubr^{13,16}, Arnold J. Levine¹, Timothy A. Chan^{2,3,4,7}, Jedd D. Wolchok^{7,8,15,16} & Benjamin D. Greenbaum^{10,11,12,13}



A large peptidome dataset improves HLA class I epitope prediction across most of the human population

Siranush Sarkizova^{2,13}, Susan Klaeger^{©,23}, Phuong M. Le³, Lettita W. Li³, Giacomo Oliveira³, Hasmik Keshishian³, Christina R. Hartigar³, Wandi Zhang³, David A. Braun^{2,2,4,5}, Keith L. Ligon^{2,4,5,4} Pavan Bachireddy^{2,4,5}, Joannis K. Zervantonakis ^{©,} Jennifer M. Rosenbluth ^{©,} Tamara Ouspenskaia³, Travis Law^{©, 3}, Sune Justesen³, Jonathan Stevens⁶, William J. Lane^{®,4,0}, Thomas Eisenhaure³, Guang Lan Zhang^{2,4,1}, Karl R. Clauser³, Nir Hacohen^{®,2,2,2,4}, Steven A. Carr^{®,2,4}, Catherine J. Wu^{®,2,3,5,4} and Derin B. Keskin^{®,2,4,5,4,5}

Develop and provide access to new cancer epitope analysis and prediction tools

- Provide prediction tools <u>tailored to the needs of cancer</u> <u>immunologists</u>
 - what neoepitopes are generated by a given mutation?
 - side-by-side predictions for mutant and wild-type peptides
- Develop <u>novel prediction tools</u> for cancer epitopes
 - combined assessment of expression and binding
 - include additional features when predicting epitopes

Use curated cancer epitope datasets to benchmark epitope prediction tools

- Assemble comprehensive sets of cancer epitope data and make available in simple format for bioinformaticians for tool training and testing
- Conduct benchmarks of prediction tools on cancer epitope datasets
- Manual compile and run benchmarks (initially)
- Automated benchmarks of all tools implemented in CEDAR, using newly curated data

Examples of benchmark targets for prediction tools

- What peptides in a tumor sample are processed and presented on MHC
- What neo-epitopes are recognized by T cells from a cancer patient?

Summary

- CEDAR will be an extension of IEDB, containing cancerrelated epitope data and tools
- Exiting tools will be adapted to the needs of cancer researchers and novel cancer-specific tools will be developed
- First release planned in second quarter of 2022